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Abstract: Binz et al. propose a general framework for metalearning and contrast it with built-by-hand 
Bayesian models. We comment on some architectural assumptions of the approach, its relation to the 
active inference framework, its potential applicability to living systems in general, and the advantages 
of the latter in addressing the explanation problem.

Binz et al. craft a comprehensive outline for advancing meta-learning (MetaL) on the basis of several 
arguments concerning the tractability of optimal learning algorithms, manipulation of complexity, and 
integration into the rational aspects of cognition, all seen as basic requirements for a domain-general 
model of cognition. Architectural features include an inductive process from experience driven by 
repetitive interaction with the environment, necessitating i) an inner loop of ‘base learning’, and ii) an 
outer loop (or MetaL) process through which the system is effectively trained by the environment to 
ameliorate its inner loop learning algorithms. A key aspect of the model is its dependence on the 
relation between the typical duration of a (general, MetaL) problem-solving episode and the typical 
duration of a (particular, learned) solution.

While Binz et al. focus on MetaL as a practical methodology for modeling human cognition, it is also 
interesting to ask how MetaL as Binz et al. describe it, fits into the conceptual framework of cognition 
in general, and also to ask how it applies both to organisms other than humans and to artificial (or 
hybrid) systems operating in task environments very different from the human task environment. From 
a broad perspective, MetaL is one function of metacognition (e.g. Flavell, 1979; Shea and Frith, 2019; 



Cox, 2005). Both MetaL and metacognition more generally engage memory and attention as they are 
neurophysiologically enacted by brain regions including the default mode network (Glahn et al., 2010),
as reviewed for the two theories in (Wang, 2021) and (Kuchling, Fields and Levin, 2022), respectively.

When MetaL is viewed as implemented by a metaprocessor that is a proper component of a larger 
cognitive system, one can ask explicitly about the metaprocessor’s task environment and how it relates 
to the larger system’s task environment. MetaL operates in a task environment of learning algorithms 
and outcomes, or equivalently, a task environment of metaparameters and test scores. How the latter are
measured is straightforward for a human modeler employing MetaL as a methodology, but is less 
straightforward when an explicit system-scale architecture must be specified. The question in this case 
becomes that of how the object-level components of a system use the feedback received from the 
external environment to train the metaprocessor. The answer cannot, on pain of infinite regress, be 
MetaL. The relative inflexibility of object-level components as “trainers” of their associated 
metaprocessors effectively bakes in some level of non-optimality in any multilayer system.

Binz et al. emphasize that MetaL operates on a longer timescale than object-level learning. Given a task
environment that imposes selective pressures with different timescales, natural selection will drive 
systems toward layered architectures that exhibit MetaL (Kuchling, Fields and Levin, 2022). Indeed the
need for a “learning to learn” capability has long been emphasized in the active-inference literature 
(e.g. Friston et al., 2016). Active inference under the free-energy principle (FEP) is in an important 
sense “just physics” (Friston, 2019; Ramstead et al., 2022; Friston et al., 2023); indeed the FEP itself is 
just a classical limit of the principle of unitarity, i.e. of conservation of information (Fields et al., 2022; 
Fields et al., 2023). One might expect, therefore, that MetaL as defined by Binz et al. is not just useful, 
but ubiquitous in physical systems with sufficient degrees of freedom. As this is at bottom a question of
mathematics, testing it does not require experimental investigation.

What does call out for experimental investigation is the extent to which MetaL can be identified in 
systems much simpler than humans. Biochemical pathways can be trained, via reinforcement learning, 
to occupy different regions of their attractor landscapes (Biswas et al, 2021; 2022). Do sufficiently 
complex biochemical networks that operate on multiple timescales exhibit MetaL? Environmental 
exploration and learning are ubiquitous throughout phylogeny (Levin, 2022; 2023); is MetaL equally 
ubiquitous? Learning often amounts to changing the salience distribution over inputs, or in Bayesian 
terms, adjusting precision assignments to priors. To what extent can we describe the implementation of 
MetaL by organisms in terms of adjustments of sensitivity/salience landscapes – and hence attractor 
landscapes – on the various spaces that compose their umwelts?

As Binz et al. point out, in the absence of a mechanism for concrete mathematical analysis, MetaL 
forsakes interpretable analytic solutions and hence generates an “explanation problem” (cf. Samak et 
al., 2021). As in the case of deep AI systems more generally, experimental techniques from cognitive 
psychology may be the most productive approach to this problem for human-like systems (Taylor and 
Taylor, 2021). Relevant to this is an associated spectrum of ideas, including how problem solving is 
innately perceptual, how inference is “Bayesian satisficing” not optimization (Chater, 2018; Sanborn 
and Chater, 2016), the relevance of heuristics (Gigerenzer and Gaissmaier, 2011; cf. Fields and 
Glazebrook, 2020), and how heuristics, biases, and confabulation limit reportable self-knowledge 
(Fields, Glazebrook and Levin, 2024). Here again, the possibility of studying MetaL in more tractable 
experimental systems in which the implementing architecture can be manipulated biochemically and 
bioelectrically, may offer a way forward not available with either human subjects or deep neural 
networks.
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