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We show that in the operational setting of a two-agent, local operations, classical communication (LOCC) protocol, 
Alice and Bob cannot operationally distinguish monogamous entanglement from a topological identification of 
points in their respective local spacetimes, i.e. that ER = EPR can be recovered as an operational theorem. Our 
construction immediately implies that in this operational setting, the local topology of spacetime is observer-
relative. It also provides a simple demonstration of the non-traversability of ER bridges. As our construction does 
not depend on an embedding geometry, it generalizes previous geometric approaches to ER = EPR.
1. Introduction

Maldacena and Susskind [22] conjectured, using geometric argu-
ments in AdS/CFT applied to black holes, that a wormhole, i.e. an 
Einstein-Rosen (ER) bridge, is equivalent to a pair of maximally Einstein-
Podolski-Rosen (EPR) entangled black holes, i.e. that ER=EPR (see also 
[26]). Here we show that two distinct observers cannot operationally 
distinguish, by independent local manipulations and measurements, 
monogamous entanglement from a topological identification of points in 
their respective local spacetimes. In other words, in a two-agent setting 
it is not possible to operationally distinguish ER from EPR. Our result 
represents a rigorous derivation of ER=EPR as an operational theorem; 
furthermore, it provides a generalization of ER=EPR, with no necessity 
of geometric embedding, and a demonstration of the non-traversability 
of ER bridges.

The relevance of ER=EPR lies in its possible resolution to the AMPS 
firewall paradox, as introduced in [3]. The eventual appearance of a 
firewall can be traced to the flow of energy/matter among the two dis-
tant black holes. But the appearance of the firewall inside the event 
horizon prohibits sending any external superluminal signal. Maldacena 
and Susskind showed that pair production of charged black holes in a 
background magnetic field triggers their entanglement, and that after 
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Wick rotation these behave as a wormhole. They extended then their 
conjecture so as to comprise not only entangled pairs of black holes, 
but also any possible entangled pairs of particles. These particles would 
be also connected by wormholes, at higher (Planckian) energy scales. 
This opened the pathway to a fascinating interpretation of the conjec-
ture, that spacetime geometry and entanglement are interwoven, hence 
substantiating a previous observation by Van Raamsdonk [29].

Both the concepts and methods of quantum information theory have 
been adapted to advance emergent theories of quantum gravity. The 
causal structure of space-time emerges in these models from the semi-
classical limit of quantum correlation functions. The metric texture of 
geometry, on the other hand, is determined in the semi-classical limit 
by dynamical (Einstein) equations. Hinging on a close relation between 
gravity and quantum mechanics (see e.g. [27]), several authors pointed 
out how entanglement and quantum error correction may play a funda-
mental role to understand quantum gravity [23].

The Bekenstein-Hawking entropy area law marks a sharp contradic-
tion with expectations from any theory with local degrees of freedom. 
The holographic principle, as formulated by ‘t Hooft [19] and Susskind 
[25], states three-dimensional space to be actually described as a two-
dimensional space. Within this scenario the descriptions of gravity and 
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information are deeply interwoven: the Ryu-Takayanagi relation [24]
suggests space-time geometry to emerge from quantum entanglement 
[29,22]; on the other hand, holographic screens can be seen to be clas-
sical information channels [18]. Furthermore, as pointed out in [27] the 
strong relation between quantum gravity and quantum information en-
ables to simulate the former exploiting quantum computers. This is a 
byproduct of the strategy to describe the emergence of spacetime ge-
ometry and gravity from quantum information properties of many-body 
systems [23].

A specific model of gravity as entirely emergent from quantum me-
chanics, and hinging on the most fundamental nature of quantum me-
chanics, was studied in [21], where: i) the metric field emerges from the 
asymptotic behavior of the correlations function in the large 𝑁 (number 
of constituents of the complex system) limit; ii) the topology of space-
time is determined by the quantum fluctuations of the topology, in the 
out-of-equilibrium phase. Topology is indeed fixed in the Einstein the-
ory of gravity. Only quantum fluctuations, affecting quantum states of 
pre-geometry, may entail changes of topology of these states that later, 
in the semiclassical limit, provide space-time manifolds at fixed geome-
try.1

From an operational perspective, measurements of entangled pairs 
implement local operations, classical communication (LOCC) protocols 
[6]. This is clear in a canonical Bell/EPR experiment, where the agents 
Alice and Bob must agree, via classical communication, to employ spec-
ified detectors in specified ways, and must later exchange their accu-
mulated data (or transfer it to some 3rd party) in the form of classical 
records. Two defining characteristics of LOCC protocols bear emphasis 
for what follows:

(1) Alice and Bob both perform only local operations. They must, there-
fore, each employ spatial quantum reference frames (QRFs [5]), 
which we will denote 𝑋𝐴 and 𝑋𝐵 , respectively, with respect to 
which they specify the position of the quantum degrees of free-
dom that they manipulate, e.g. the positions of the detectors in a 
Bell/EPR experiment. These spatial QRFs must commute with the 
QRFs 𝑄𝐴 and 𝑄𝐵 that they, respectively, employ to manipulate the 
quantum channel, i.e.

[𝑋𝐴,𝑄𝐴] = [𝑋𝐵,𝑄𝐵] =𝑑𝑒𝑓 0 ;

(2) Alice and Bob must both comprise sufficient degrees of freedom to 
both implement their respective QRFs and to communicate classi-
cally. This is, effectively, a large N limit that assures their separa-
bility as physical systems.

Moreover, it was shown in [17] that LOCC protocols naturally give rise 
to quantum error correcting codes (QECCs), since the communication 
between two agents is possible only if each of them can implement their 
operations with sufficient degree of fidelity both in their classical and 
quantum channels. QECCs, as argued in [23], naturally induce a locality 
principle from the reconstruction of bulk operators from the boundary 
in AdS/CFT [2]. This background justifies the use of LOCC protocols 
where the implementing agents are mutually separable.

It has been shown in [16] that sequentially-repeated state prepara-
tions and/or measurements that employ mutually commuting QRFs, e.g. 
the sequentially repeated preparations and/or measurements of position 
and spin during a Bell/EPR experiment, can be represented, without loss 
of generality, by topological quantum field theories (TQFTs [4]). It was 
then shown in [17] that any two-agent LOCC protocol can be repre-
sented by Diagram (1), in which the agents Alice and Bob are i) mutually 
separable, and hence conditionally statistically independent, ii) are sep-
arated from their joint environment 𝐸 by a holographic screen ℬ, iii) 

1 The topological features of ER bridges can be then accounted from the semi-
classical limit of the quantum fluctuations of pre-geometric states, in specific 
2

models of (emergent) “quantum information gravity”.
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implement read/write QRFs 𝑄𝐴 and 𝑄𝐵 , respectively, and iv) commu-
nicate via classical and quantum channels implemented by 𝐸.

Intuitively, Alice and Bob are connected by a quantum channel if 
there exist distinct (collections of) qubits 𝑞𝐴 and 𝑞𝐵 accessible only to 
Alice and Bob, respectively, and |𝑞𝐴𝑞𝐵⟩ ≠ |𝑞𝐴⟩|𝑞𝐵⟩. Alice and Bob are 
connected by a classical channel if there exist distinct (collections of) 
qubits 𝑞′

𝐴
and 𝑞′

𝐵
accessible only to Alice and Bob, respectively, and 

causal processes 𝑓 and 𝑔 implemented by 𝐸 such that 𝑞′
𝐵
= 𝑓 (𝑞′

𝐴
) and 

𝑞′
𝐴
= 𝑔(𝑞′

𝐵
). Here “causal” means causal with respect to clocks in 𝐸. Al-

ice and Bob being distinct, mutually separable agents that communicate 
classically — i.e. causally — entails that the QRFs 𝑄𝐴 and 𝑄𝐵 do not 
commute, and hence that LOCC protocols exhibit quantum contextuality 
[11,12]. We can, therefore, consider Alice and Bob to also be separated 
by a boundary, which is elided in Diagram (1) to emphasize their joint 
interaction with 𝐸, and to have access only to distinct, non-overlapping 
sectors of ℬ. In practical Bell/EPR experiments, the separation of Alice 
and Bob is effected by their spacelike separation in a laboratory coor-
dinate system; in the notation of Diagram (1), this corresponds to the 
classical channel being timelike, i.e. causal, in the laboratory (i.e. 𝐸) 
coordinate system.

ℬ
Alice

Bob

𝐸
𝑄𝐴

𝑄𝐵 Quantum channel

Classical channel

(1)

The tokens via which Alice and Bob classically communicate — 
e.g. modulations of the ambient photon field — comprise degrees of 
freedom of 𝐸 and are therefore quantum systems that must be mea-
sured to extract state information [28]. The distinction between classical 
and quantum channels is, therefore, an a priori assumption that al-
lows defining LOCC, not an observational outcome of either Alice’s or 
Bob’s interactions with 𝐸. Nonetheless, a LOCC protocol permits Alice 
and Bob to determine via observation and classical communication if a 
quantum channel is shared between them. This is empirically manifest 
in Bell/EPR experiments, and relied upon theoretically when treating 
quantum Darwinism [32] as enabling a “public” quantum-to-classical 
transition [17].

The detection of monogamous entanglement, i.e. entanglement 
reaching the relevant Tsirelson bound [7] for violation of the relevant 
Bell inequality, requires a perfectly decoherence-free quantum channel 
traversing 𝐸. Thus, we can also state our result as showing that Alice and 
Bob cannot operationally distinguish a perfectly decoherence-free quan-
tum channel traversing 𝐸 from a topological identification of points in 
their respective measured spacetimes. This result is demonstrated below 
using a purely topological argument, and is independent of the geome-
try and coordinates (i.e. spatial QRFs) employed by either Alice or Bob 
to describe either the boundary ℬ or the bulk 𝐸.

A number of criticisms of ER = EPR on geometric grounds [8] be-
come, in this setting, constraints on Alice’s and Bob’s abilities to measure 
and communicate about spacetime, i.e. constraints on the QRFs they 
employ to measure space and time. As entanglement is known to be 
observer/description/QRF-relative [30,31], our result immediately im-
plies that the local topology of spacetime is observer/description/QRF-

relative.
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2. LOCC protocols

2.1. Quantum instruments and quantum channels

We first briefly recall the definition of LOCC, closely following [6]. 
Recall that given a quantum system with corresponding Hilbert space 
, a quantum instrument is a family of completely positive maps 𝑗 ∶
𝐵() ⟶ 𝐵(), where each 𝑗 is a bounded linear map on the space 
of bounded linear operators 𝐵() of . Additionally, it is required that 
the sum 

∑
𝑗 𝑗 is trace preserving, and there are countably (possibly 

finitely many) indices 𝑗. The set of quantum instruments is in one-to-one 
correspondence with the set of quantum-classical maps, defined as trace-
preserving completely positive (TCP) maps 𝐵() ⟶ 𝐵() ⊗ 𝐵(ℂΘ)
of the form 𝜌 ↦

∑
𝑗 𝑗 (𝜌) ⊗ |𝑗⟩ ⟨𝑗|, where Θ denotes the index set of 

quantum instruments. This leads to characterizing the actual nature of 
a quantum channel.

In two-agent protocols as depicted in Diagram (1) above, 𝑗 = 2 and 
each of the QRFs 𝑄𝐴 and 𝑄𝐵 corresponds to the composition of a quan-
tum instrument acting on the relevant boundary sector of the quantum 
channel with a quantum-classical map acting on the relevant boundary 
sector of the classical channel. An 𝑛-partite system has a corresponding 
Hilbert space given by the tensor product  =𝑘1 ⊗⋯ ⊗𝑘𝑛 , where 
⊗𝑘𝑗 represents the reduced state space of the 𝑗th component of the 
system. In this case, an instrument {𝑗}𝑗∈Θ is one way local with re-

spect to the 𝑘th component if we have 𝑗 =
⨂

𝑗≠𝑘 𝑗 ⊗ 𝑘, where 𝑘 is 
a completely positive map while each 𝑗 is TCP. This operation repre-
sents party 𝑘 applying a quantum instrument 𝑖 and then transmitting 
the outcome to all other parties classically.

2.2. Implementing LOCCs

An instrument I′ is LOCC linked to I if I′ is a coarse-graining of I, 
where coarse-graining is, roughly speaking, a procedure of grouping in-
struments in I in a compatible way (see [6]). Then, LOCCs are defined 
recursively. One says that I is LOCC1 if it is local with respect to some 
party. One says that I is LOCC𝑛 if it is LOCC linked to some J which 
is LOCC𝑛−1. LOCC is defined as the direct limit of a system of LOCC𝑛

instruments. For the present purposes, only two-observer, i.e. LOCC2
protocols need be considered. In the language of [17] and hence of Di-
agram (1), this LOCC linking corresponds to the requirement that only 
mutually-commuting QRFs, e.g. position and spin in a Bell/EPR exper-
iment, can be “co-deployed” by being combined into a single effective 
QRF. Formally, combining QRFs is simply concatenating commuting op-
erators. Any QRF can be represented as an operator by a Cone-CoCone 
Diagram (CCCD) of commuting component operators that collectively 
implement a logically-gated, distributed information flow, and out of 
which the TQFT is constructed (see [16,17], and references therein for 
details). Concatenating commuting QRFs is then concatenating CCCDs, 
which commute by definition if the operators they represent commute.

3. Bell/EPR experiments

Let us proceed to explain matters in terms of a canonical Bell/EPR 
experiment. In such an experiment, Alice and Bob can only detect entan-
glement if they each have a free choice of measurement basis, i.e. only 
if they can each independently choose the instrument settings to em-
ploy for each measurement. If this free choice requirement is violated 
by some form of superdeterminism (or “conspiracy”), Alice and Bob are 
themselves effectively entangled and cannot function as two indepen-
dent observers. It is also, clearly, nonsensical to talk about “classical 
communication” if Alice and Bob cannot be considered separate sys-
tems. Hence formally, separability of the joint state, |𝐴𝐵⟩ = |𝐴⟩|𝐵⟩ (or 
of the joint density 𝜌𝐴𝐵 = 𝜌𝐴𝜌𝐵) is a requirement of LOCC, and hence 
of operational access to a shared quantum channel [17].

In Diagram (1), both classical and quantum channels are imple-
3

mented by 𝐸 and hence are, in general, exposed to interaction with other 
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qubits contained within 𝐸. Interactions between the degrees of freedom 
of 𝐸 that implement the channels and other, non-channel degrees of 
freedom of 𝐸 implement eavesdropping or noise injection in the classi-
cal channel and decoherence in the quantum channel. In both cases, the 
coupling of channel to non-channel degrees of freedom is a quantum in-
teraction, and its result is to transform pure states of channel degrees 
of freedom into mixed states. If such mixing occurs, observations of the 
channel states, whether classical or quantum, will be characterized by 
stochastic noise, with uniform noise spectra in the limit of maximally 
mixed states. Alice and Bob have no direct observational access to such 
mixing interactions, which occur entirely within 𝐸 and are implemented 
by the internal interaction Hamiltonian 𝐻𝐸 . The risk of decoherence can 
be minimized by minimizing the exposure of the quantum channel to the 
rest of 𝐸. Formally, such procedures correspond not to tracing out de-
grees of freedom of 𝐸 but to setting their interaction with the channel 
degrees of freedom to zero.

4. Alice and Bob interacting via a quantum channel

Consider now a quantum channel in the limit of zero decoherence. 
In an idealized Bell/EPR experiment, this corresponds to monogamous 
pairwise entanglement, and hence to a Bell inequality violation reaching 
the Tsirelson bound, provided Alice and Bob consistently choose settings 
45◦ apart. Setting decoherence equal to zero is requiring that there no 
interaction between channel and non-channel degrees of freedom of 𝐸. 
Hence the limit of zero decoherence in the quantum channel is reached 
as the interaction, in 𝐸, between channel and non-channel degrees of 
freedom approaches zero. Taking 𝑞𝐴 and 𝑞𝐵 to be the (collections of) 
qubits accessible exclusively to Alice and Bob, respectively as above, 
the limit of zero decoherence is reached when the state of the quantum 
channel is simply the pure state |𝑞𝐴𝑞𝐵⟩.

We can assume, without loss of generality, that Alice and Bob in-
teract directly with the qubits 𝑞𝐴 and 𝑞𝐵 to which they have exclusive 
access. We can, therefore, assume that these qubits are localized to Al-
ice’s and Bob’s respective sectors of the boundary ℬ. The pure state 
|𝑞𝐴𝑞𝐵⟩ is, in this case, an entangled state of ℬ.

This can be accomplished as shown in Diagram (2), where for con-
venience the boundary ℬ is depicted edge-on. The operations on ℬ
depicted from left to right in Diagram (2) do not change the topologi-
cal relationships between Alice and Bob or between either Alice or Bob 
and 𝐸, and do not change 𝐸; they merely take the number of degrees 
of freedom of 𝐸, required to implement the quantum channel to zero. 
The joint state |𝐴𝐵⟩ remains separable, as is required for Alice and Bob 
to have free choice of basis (i.e. to be regarded as experimenters) and 
for their interaction to remain LOCC. We assume that the depicted op-
erations on ℬ constitute a homotopy of the quantum channel which 
leaves the rest of the space fixed, i.e. it is the identity map outside of 
the quantum channel. So, in particular, we assume to be in the situation 
where the instruments realizing 𝑄𝐴 and 𝑄𝐵 are unchanged during this 
operation.

ℬ

Alice

Bob

𝐸
𝑄𝐴

𝑄𝐵

Quantum channel

Classical channel ℬ

Alice

Bob

𝐸
𝑄𝐴

𝑄𝐵

ℬ

Alice

Bob

𝐸
𝑄𝐴

𝑄𝐵

(2)

In a Bell/EPR experiment, the topological transformation effected 
in Diagram (2) would be approximated by decreasing the laboratory-
frame distance between each of Alice and Bob and the centrally-located 
source of entangled pairs toward zero, with the limit shown in the right-
most diagram representing a point source to which Alice and Bob are 
both immediately adjacent. As discussed in [14], it also corresponds to a 

Bell/EPR experiment as described from the perspective of the entangled 
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state |𝑞𝐴𝑞𝐵⟩, in which the observers Alice and Bob effectively collide at 
the fixed position of |𝑞𝐴𝑞𝐵⟩ (see [14] Fig. 8a).

5. ER=EPR

In leading to our main results reflected by the illustrative repre-
sentation of Diagram (2), we will further clarify the setting. Here, we 
explicitly assume that Alice, Bob, and 𝐸 are finite, mutually separable 
systems, and assume the holographic principle (HP) in a geometrically-
independent, background-free setting for all spaces in question. In par-
ticular, without loss of generality, the boundary ℬ can be represented 
as an ancillary finite array of mutually non-interacting qubits, i.e. ℬ
has an effective Hilbert space ℬ =⊗𝑁

𝑖=1𝑞𝑖
for some finite number 𝑁

of qubits 𝑞𝑖. With this description, ℬ is considered, in a strict sense, to 
be a distinct quantum system: it has no effect on the physics as imple-
mented by the joint system, the self-interaction Hamiltonian 𝐻𝑈 , or the 
𝐴 −𝐵 interaction 𝐻𝐴𝐵 , or 𝐻𝐸 . The joint system 𝑈 =𝐴𝐵𝐸 thus requires 
𝑈 =𝐴 ⊗𝐵 ⊗𝐸 . In the absence of any common embedding, this 
motivates having ℬ ∩𝐴 ⊗𝐵 ⊗𝐸 = ∅ [16,1,14,15]. The qubits 
𝑞𝐴 and 𝑞𝐵 are, in this picture, components of ℬ as discussed above. 
We can, with these assumptions, express the result of Diagram (2) as a 
theorem:

Theorem 1. In any LOCC protocol in which all systems are finite, and in 
which the boundary ℬ between the communicating agents 𝐴 and 𝐵 and their 
joint environment 𝐸 is a holographic screen, as the entanglement made avail-

able to 𝐴 and 𝐵 by the quantum channel approaches pairwise monogamy, 
and hence the decoherence in the quantum channel detectable by 𝐴 or 𝐵
decreases to zero, the number of environmental degrees of freedom of 𝐸
required to implement the quantum channel becomes operationally indistin-

guishable, by 𝐴 or 𝐵, from zero in the limit of monogamous entanglement.

Proof. Suppose for convenience that 𝐴 and 𝐵 each access 𝑁∕2 qubits 
of ℬ and that both quantum and classical channels are information-
ally symmetric, i.e. the relevant sectors of ℬ have the same dimensions 
for both 𝐴 and 𝐵. Consider the case of what 𝐴 can detect; the case for 
𝐵 is no different. Let 𝐴 implement the QRFs and associated computa-
tions needed to prepare qubits within the sector of ℬ corresponding 
to 𝐴’s end of the quantum channel (i.e. the qubit(s) 𝑞𝐴), according to 
information received via the classical channel, and send messages via 
the classical channel given observations of the qubits 𝑞𝐴 ; without loss 
of generality, we can consider these combined computations to imple-
ment a single QRF 𝑄𝐴 [17]. 𝐴 can estimate decoherence in the quantum 
channel by comparing her measurement statistics, together with 𝐵’s 
statistics received via the classical channel, to the relevant Tsirelson 
bound; we are interested in the case in which the joint measurement 
statistics approaches the relevant Tsirelson bound and hence the esti-
mated decoherence approaches zero.

Note that because 𝑄𝐴 commutes with Alice’s spatial QRF 𝑋𝐴 (and 
equivalently for Bob), Alice’s measurement of the Tsirelson bound for 
the quantum channel is completely independent of her measurement of 
its position with respect to her local coordinates.

Aside from this classical measure of purity, and hence decoherence, 
by the Tsirelson bound, 𝐴 can obtain information about the number of 
degrees of freedom of 𝐸 that implement the quantum channel only via 
the action of the Hamiltonian 𝐻𝐸 on qubits of ℬ other than 𝑞𝐴. Let 𝑄
denote the degrees of freedom of 𝐸 that implement the quantum channel 
and 𝑄̄ denote its complement within 𝐸, i.e. 𝑄𝑄̄ =𝐸. We can then write 
the Hamiltonian decomposition 𝐻𝐸 = 𝐻𝑄 +𝐻𝑄̄ +𝐻𝑄𝑄̄. The interac-
tion 𝐻𝑄𝑄̄ implements environmental decoherence within the quantum 
channel, or perturbation of the channel-encoded information in the no-
tation of [20]. As 𝐻𝑄𝑄̄ → 0, 𝑄 and 𝑄̄ become decoupled. In this case, 
however, the action of 𝐻𝑄̄ on ℬ can transfer no information about 𝑄. 
Hence 𝐴 can obtain no information about 𝑄 by observing qubits of ℬ
that are not within 𝑞𝐴. 𝐴 cannot, therefore, determine by observation 
4

of either 𝑞𝐴 or any other qubits on ℬ that dim(𝑄) ≠ 0. If we regard 𝑞𝐴
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and 𝑞𝐵 as components of 𝐴’s and 𝐵’s sectors of ℬ as discussed above, 
then in the limit as |𝑞𝐴𝑞𝐵⟩ approaches a pure state, i.e. decoherence 
approaches zero, we have 𝑄 → 0; hence we also state the result as: 𝐴
cannot determine by observation that the quantum channel is anything 
other than the pure state |𝑞𝐴𝑞𝐵⟩. □

Corollary 1. The codespace dimension of a perfect QECC is operationally 
indistinguishable from the code dimension.

Proof. In fact, any LOCC protocol induces a QECC [17, §4]. More 
specifically, any LOCC protocol implemented jointly by Alice and Bob 
necessitates that 𝐸 implements a QECC. The codespace dimension of 
this QECC is the dimension of the component 𝑄 of 𝐸 that implements 
the quantum channel from Alice to Bob; the code dimension is the num-
ber of boundary qubits — 𝑞𝐴 and 𝑞𝐵 in the above notation — that Alice 
and Bob can, respectively, directly manipulate. Thus, the corollary fol-
lows directly from Theorem 1. □

In order to make the connection with ER=EPR clear, we commence 
with the following steps. Let us assume that Alice and Bob each imple-
ment a 3d spatial QRF, which we will denote 𝑋𝐴 and 𝑋𝐵 respectively, 
that allows them each to construct a representation of 3d spatial rela-
tions between identified objects from the data encoded on their acces-
sible sectors of ℬ. We assume that these spatial QRFs are freely and 
independently chosen, and make no assumptions about the geometries 
they impose on Alice’s and Bob’s respective sectors of ℬ. In particular, 
we make no assumption of any spatial QRF, geometry, or coordinate sys-
tem shared by Alice and Bob. Hence, while they can communicate about 
their observed spatial relations via their classical channel, nothing re-
quires that they can interpret each others’ spatial coordinates or make 
any inference about their relative spatial locations. Let us assume that 
they each measure a spatial location, independently and using their own 
spatial QRFs, at which they access their respective manipulable qubits 
(i.e. 𝑞𝐴 and 𝑞𝐵) of their shared quantum communication channel. We 
denote these locations 𝑥𝐴 and 𝑥𝐵 respectively. The following corollary 
specifies the connections with EPR and ER for each case.

Corollary 2. In any LOCC protocol in which all systems are finite, and 
in which the boundary ℬ between the communicating agents 𝐴 and 𝐵
and their joint environment 𝐸 is a holographic screen, a quantum chan-

nel implementing a shared, monogamously-entangled pair of qubits (“EPR”) 
is operationally indistinguishable from a topological identification of the 
locally-measured locations 𝑥𝐴 and 𝑥𝐵 of the qubits accessed by 𝐴 and 𝐵
respectively (“ER”).

As Corollary 2 makes no assumption of an embedding geometry, but 
rather only assumes quantum and classical channels between Alice and 
Bob (i.e. LOCC), it substantially generalizes both the original [22] and 
subsequent geometric formulations of ER = EPR.

6. Discussion

We derived ER=EPR as operational theorem, without assuming an 
overall embedding geometry — this distinguishes our approach from 
the original proposal by Maldacena and Susskind. All we require is a 
classical communication channel, which is a much weaker assumption. 
Furthermore, while it is a standard result that ER bridges are non-
traversable — see e.g. the discussion in [26] — our construction makes 
this particularly clear. Suppose Alice prepares her qubit(s) 𝑞𝐴 by em-
ploying her local 𝑧-axis QRF, or some particular local 𝑧-axis QRF for 
each qubit in 𝑞𝐴 if multiple qubits and 𝑧-axis QRFs are available. If 
|𝑞𝐴𝑞𝐵⟩ is a pure state, Alice’s preparation of 𝑞𝐴 fixes 𝑞𝐵 . However, Bob 
measures 𝑞𝐵 using his own local 𝑧-axis QRF(s), which bears some ar-

bitrary relationship to Alice’s. The most Alice can do is to send Bob a 
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classical description of her local QRFs, which requires use of a classi-
cal, i.e. causal, channel. Alice and Bob cannot, therefore, employ their 
shared quantum channel for superluminal (non-causal) communication.

Alice cannot, moreover, “jump into” her end of the quantum channel 
and “meet with” Bob, regardless of what Bob does. Alice is a physical 
system, and so can be considered a collection of qubits in some joint 
state. “Jumping into” the channel requires that dim(Alice) < dim(𝑞𝐴). 
In this case, Alice herself is the QRF in which 𝑞𝐴 is (partially) prepared. 
As Alice cannot determine her own complete state by observation [13], 
she cannot, even in principle, send Bob a classical message that would 
allow him to reconstruct her state from a measurement of 𝑞𝐵 . No fire-
wall is required for this negative outcome, and “exotic” modifications of 
the channel do not effect it. Hence again, our result generalizes those ob-
tained from geometric formulations of ER = EPR. Furthermore, at least 
for the EPR problem, our operational approach employing QRFs appears 
to be fully compatible with how Niels Bohr once envisaged the potential 
importance of introducing their mechanism [10] — in the alternative 
deBroglie-Bohm approach, where all degrees of freedom are subject to 
a global quantum potential [9], a LOCC protocol is only definable in the 
large N limit, in which Alice and Bob are separable systems.
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