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Abstract:

Replicating or exceeding human intelligence, not just in particular domains 
but in general, has always been a major goal of Artificial Intelligence (AI).  
We argue here that “human intelligence” is not only ill-defined, but often 
conflated with broader aspects of human psychology.  Standard arguments 
for replicating it are morally unacceptable.  We then suggest a reframing: 
that the proper goal of AI is not to replicate humans, but to complement 
them by creating diverse intelligences capable of collaborating with 
humans.  This goal renders issues of theory of mind, empathy, and caring, or
community engagement, central to AI.  It also challenges AI to better 
understand the circumstances in which human intelligence, including 
human moral intelligence, fails. 
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1. Introduction: Human-like intelligence as a goal of AI

While some have argued that it is not a major or even a real goal of AI

research (e.g. Whitby, 2003), replicating or exceeding human-level (or 

“human-like”) intelligence in artificial systems has always been both 

explicitly-stated and highly publicized as AI’s primary objective.  Turing’s 

(1950) imitation game is, after all, about imitating a human. The title of 

Newell and Simon’s report on the General Problem Solver (GPS, 1961) 

reads, “GPS, A program that simulates human thought.”  Feigenbaum and 

Feldman (1963) chose the title Computers and Thought at a time when the 

only recognized exemplars of thought, at least in academia, were humans.  

In their Turing Award lecture, Newell and Simon (1976) explicitly 

characterize the “empirical research” of AI as understanding human 

intelligence by replicating it.  The goal of the CYC project (Lenat, Prakash 

and Shepherd, 1986) is, similarly, to replicate human common-sense 

reasoning.  Nilsson (2006) is perhaps the most explicit, characterizing the 

goal of AI as building machines that can do every job humans are paid to do.

Prominent projects including the ACT-R model (Anderson, 1993), SNePS 

(Shapiro, 2000), and the Soar cognitive architecture (Laird, 2012) were not 

just intended to take us further down the road toward building a human-

level intelligence, but were explicitly characterized as actually replicating at

least some aspects of human-level intelligence.  These were, moreover, 

some of the most important, visible, and well-funded projects in the history 

of AI.  So, building a human-level intelligence has, as a matter of historical 

record, been a serious and perfectly explicit goal of AI from the start.1  It is 

also a current goal, despite the arguments of detractors like Whitby and the

efforts of some prominent AI researchers, e.g. Brooks (1991), to set 

alternative goals.

From Lucas (1961) to Penrose (1989) and beyond, the “strong AI” goal

of replicating human-like intelligence, or perhaps to exceed it by creating 
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artificial general intelligence (AGI) (Goertzel, 2014), has drawn the ire of 

philosophers, scientists in other disciplines, and much of the public (see 

Dietrich et al., 2021 for an extended discussion).  Part of the furor has 

always been about replicating human consciousness, not just human 

intelligence (HI) as a set of abstracted problem-solving capabilities.  The 

relationship between consciousness and intelligence, and in particular, 

whether intelligence requires consciousness, remains highly controversial.  

While we will refrain from discussing this issue in detail, we reject a priori 

claims that AIs either must be or (much more commonly) cannot be 

conscious in favor of a position that acknowledges the moral hazard of AIs 

possibly turning out to be conscious, either now or at some time in the 

future.

Within the AI community itself, the perceived failures of grand, 

monolithic projects such as those referenced above have driven successive 

waves of architectural innovation, from the “second wave” of artificial 

neural networks (ANNs) (Rumelhart and McClelland, 1986; Smolensky, 

1988), to embodied robotics (Brooks, 1991) and the broader embodied, 

embedded, enactive, extended, and affective (4EA) cognition movement 

(Anderson, 2003, Froese and Ziemke, 2009), to deep learning (DL) (LeCun, 

Bengio and Hinton, 2015).  Despite occasional claims to the contrary in the 

popular press,2 it is well-known that, so far, all endeavors to achieve human-

like AI have failed.  Both the size and complexity of the goal of AGI have 

been seriously and consistently underestimated.  Even as DL systems have 

achieved astonishing practical successes in narrow but important domains, 

such as those of AlphaFold (Senior et al., 2020; Jumper et al., 2021) and 

AlphaCode (Li et al., 2022), many now call for re-thinking both the idea that 

scaling alone will produce an open-domain AGI and the idea of single, 

monolithic AGIs as sought by the GPS, CYC, or SOAR projects (Dafoe et al., 

2020; Marcus, 2020; Brynjolfsson, 2022, Friston et al., 2022).
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  What, however, is “human-like intelligence”?  Is it the same as 

human intelligence (HI) in some individual or collective sense?  Is it general

intelligence (GI)?  James (1890) characterized intelligence in terms of 

adaptability or robustness: the ability to solve some given problem by a 

variety of means.  Laland and Seed (2021) list five prominent aspects of 

human intelligence – retrospective and prospective memory, tool invention 

and use, multi-domain problem solving, social cognition, and language – but

also point out that each of these appears in some form in many other 

species.  Meloni et al. (2019) emphasize that human intelligence cannot be 

understood in abstraction from human sensory and motor capabilities and 

ecological embedding; humans – indeed all organisms – are 4EA systems.  

Since Damasio (1994) brought it to wide attention, it has become widely 

accepted that motivation is an integral component of intelligence, but this 

motivational component is transferred out of the AI system and into the 

user/trainer even in advanced DL systems.  The study of intrinsic motivation

and creativity in humans has been more closely coupled to developmental 

robotics than to the pursuit of AGI (Kaplan and Oudeyer, 2007; Oudeyer, 

Baranes and Kaplan, 2013; Cangelosi and Schlesinger, 2015); indeed, social 

neuroscience as a whole has been more closely coupled to social robotics 

than to the pursuit of AGI.  Intrinsic motivation is central to the proposal of 

Friston et al. (2022) to base AI research on the free energy principle (FEP) 

(Friston, 2010; 2013): the FEP is a principle of uncertainty minimization, 

which it characterizes as the primary motivation of all systems, living or 

not, that interact with an external environment (Ramstead et al., 2022).  

Concepts such as intrinsic motivation – or of affect generally – are 

generally considered to be psychological concepts.  How much of human 

psychology is built into the concept of human intelligence?  How much of 

human psychology needs to be included in “human-like” intelligence?  Is HI,

under some suitable definition, the same as GI?  How “general” does GI 

need to be?  What kind of psychology, beyond some general motivational 
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mechanism, is needed for GI?  These questions are seldom addressed 

explicitly, and when they are, the answers tend to be vague and contentious.

Human intelligence is often just defined by pointing: it is whatever (most) 

humans have.  General intelligence is often defined in terms of 

computability.  However, “capable of computing any Turing-computable 

function, up to resource constraints” clearly will not do for AI’s purposes, as

then a laptop would count as an AGI.3  The Turing test will not do, as 

laughable claims to have “passed it” demonstrate; indeed the Turing test 

was probably never intended to be criterial for intelligence (again see 

Dietrich et al., 2021)4.  Specific abilities like chess-playing or solving 

undergraduate physics problems will not do, because, obviously, they are 

not general.  General claims for attributes like creativity or flexibility or 

robustness are, in the absence of a characterized embodiment and task 

environment, only pointers and are scarcely better defined than HI itself.  

Hence, while it is reasonably clear that no human-like AIs or AGIs yet exist, 

it is less clear why.  On the one hand, we – not just the AI community but the

entire mythopoetic tradition of artificial humans (see Brynjolfsson, 2022 for 

numerous examples) – grossly underestimated how hard the problem of 

replicating HI is.  We do not know how HI works, either at the algorithmic 

level or at the level of the neural (and more generally, bodily) 

implementation (Melloni et al., 2019).  We do not, for example, know what 

concepts are, what categorization is, what semantic relevance is, and on 

and on (Margolis and Laurence, 1999; Dietrich et al., 2021).  On the other, 

we do not know how “human-like” something needs be to have GI.  In 

particular, we do not know how human-like the psychology of a GI needs to 

be.  In this conceptual vacuum, failures can be recognized, but criteria for 

success are not just ill-defined from an engineering perspective, but rather 

deeply and still philosophically controversial.

Whitby (2003) is, moreover, not alone in claiming that even if artificial

HI (AHI) or AGI is or has been a primary goal of AI — the other primary goal
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being technological utility — it is a mistaken goal.  Brynjolfsson (2022) has 

recently argued that the proper goal of AI, for economic and moral as well 

as scientific and technological reasons, is not to duplicate HI but to exceed 

it in specific, targeted areas.  We support this critique for reasons outlined 

already in Dietrich et al. (2021, 2022).  To be blunt, why re-invent the 

wheel?  Humans are not in short supply, so why try to replicate HI?  As for 

GI, it is not clear that humans have it.  There are many problems humans 

appear unable to solve, despite generations of trying; many of these are in 

the ethical, social, economic, and political spheres where embodiment and 

motivation play at least as large a role as “thinking” in the traditional sense.

Hence if human psychology is intrinsic to HI, it is not clear that replicating 

HI is even on the path to AGI. And, again, much AI research fails to 

distinguish between HI and AGI, conflating the two and complicating the 

discussion.

In what follows, we will first expand on the above blunt critique, 

arguing in Sect. 2 that replicating HIs with human-like psychology is deeply 

immoral, and in Sect. 3 that such systems would not lie on the path to AGI.  

We will then, in the remainder of the paper, argue for reframing the 

question.  We start with the fact that humans – indeed all organisms, even 

bacteria (Stal, 2012) – have “extended minds” (Clark and Chalmers, 1998) 

in the straightforward sense of employing stigmergic memories (Fields, 

Glazebrook and Levin, 2021), i.e. memories written on the environment, 

such as pheromone trails, grocery lists, or any messages passed to another 

agent whose memory can be relied on in the future.  Humans and many 

other organisms also employ parts of the environment as tools to solve 

novel problems, and humans (and some other organisms) design and build 

tools when found objects are insufficient (Visalberghi et al., 2017).  One can,

indeed, regard AI systems as such tools.  Human problem solving is, 

moreover, typically a collective endeavor; humans use each other’s 

intelligence when their own is insufficient by itself (De Jaegher and Di 

7



Paolo, 2007; De Jaegher and Froese, 2009; Dubova, Galesic and Goldstone, 

2022).  Humans (almost) always operate, in other words, with a composite 

(HI, OI), where OI is some “other intelligence” that may be quite minimal (a 

piece of paper, a way-marker) or quite sophisticated (a smartphone, a 

laptop, one or more colleagues).  Humans, in other words, almost always 

operate with greatly extended minds.  The proper goal of AI is, in this case, 

not to replicate HI but to maximize (HI, OI), as indeed Dafoe et al. (2020), 

Brynjolfsson (2022), and Friston et al. (2022) have also argued from their 

various perspectives.5  AI is, therefore, properly a composite discipline, one 

that seeks both to understand HI well enough to characterize its 

weaknesses, and to develop OIs that compensate for these weaknesses.  AI 

is, in this sense, continuous with human – indeed hominin – engineering 

practice since the invention of the hand axe.  It is discontinuous with this 

tradition, however, in attempting to build systems that are not just tools, but

in an important sense colleagues (Fields, 1987).  As colleagues, OIs need 

not just intelligence but psychologies.  We argue, as an answer to our title’s 

question, that we want AIs to be psychologically like (most of) us in a 

particular and generally neglected way: AIs need to be, and be motivated to 

be, team players.  The fact that humans perform best as team players has 

been largely neglected until the past two decades; see Graesser (2018) for 

review.  In particular, AIs need to be good diverse team players, capable of 

working with both humans and other artifacts, regardless of capabilities or 

architectures of the latter.  AIs must be smart enough to know when they 

cannot solve a problem alone, and smart enough to ask for help. They must, 

moreover, have good enough theory-of-mind (ToM) (Frith and Frith, 2005; 

Carlson, Koenig and Harms, 2013) capabilities to ask the right kind of 
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system for help.  They need, in particular, theories of our minds and include 

our cognitive strengths and weaknesses.  They also need the capability to 

design and build a system they need to help them, just as humans 

(sometimes) do.  Such AIs will work not for us but with us, or perhaps we 

will work with them.  We conclude that any feasible AGI will be a composite 

human (or humanity)-in-the-loop system that, if it is to be of value, will be 

capable of solving problems that neither humans, nor current (HI, OI) 

systems, can solve alone.6   

2   Because It Is There

Before proceeding to offer and critique potential definitions of HI and 

GI, it is useful to ask: Why strive to build artificial human-level intelligences 

(AHIs) at all?  Why would an AHI ever have been a goal of AI?  We can 

suggest four kinds of reasons.  First, there is the mythopoetic reason: 

“Because we will have created our equals in the universe — we will no 

longer be alone.”  There is a more basic, curiosity-driven reason: “Because 

it is an obvious challenge and goal.”  One is reminded of George Mallory, 

who when asked, in 1923, why he wanted to climb Mount Everest, 

responded with: “Because it is there.”  There is the scientific reason: 

“Because to build a machine as smart as we would tell us a lot about how it 

is that we are smart.”   There is, finally, an engineering or overtly economic 

reason: “To do work that is too dangerous, too expensive, or otherwise 

inefficient or undesirable for humans to do.”  The influence of the last three 

of these reasons on AI research is well documented; we suspect that the 

first has exerted a more subtle and implicit influence from Turing onward.

None of these, however, are sufficiently good reasons.  As soon as a 

human-like psychology is included in the idea of an AHI, they all raise 

immediate moral questions.
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The primary problem with the scientific reason is that it gets the flow 

of information backwards: it assumes that we can replicate an 

extraordinarily-complex system without knowing how it works.  One can 

obviously build a fire without knowing any chemistry (but not without 

knowing that sticks burn and rocks do not), but one cannot just happen to 

build a human-level intelligence and then reverse engineer it to find out 

how we work.  This becomes obvious as soon as psychology is included in 

the mix, so it is useful to examine why it did not appear obvious in the early 

days of AI.  AI was conceived as a discipline in the aftermath of World War II

when behaviorism enjoyed its maximum influence.  For a behaviorist, a 

functional specification of desired behavior is sufficient; indeed a functional 

specification is all that is relevant, even in principle.  To scientists brought 

up on the idea that thinking – or at least the best thinking – was logical, the 

idea that building a machine that could prove theorems (Newell and Simon, 

1956) would be building an AGI (and hence automatically an AHI) might 

seem natural.  The problem with the scientific reason is that this 

psychologically-naive way of thinking has persisted and has exerted 

enormous influence on the culture and pedagogy of the field.  The 

discipline-wide pivot toward ANNs in the 1980s (see Rumelhart and 

McClelland, 1986; Smolensky, 1988 and other foundational papers), for 

example, did not incorporate 1980s cognitive neuroscience, but rather 

simplified models of neurons based conceptually on those of McCulloch and 

Pitts (1943).  There is still no convincing evidence that biological neuronal 

networks employ error back-propagation (as widely used in deep learning; 

see e.g. Wright, 2022), though see Millidge et al (2022) for evidence that 

predictive coding systems may approximate back-propagation.  Moreover, 

ANNs bear only the most abstract resemblance to “neuromorphic” 

computing systems that aim to functionally replicate neurons (see Schuman 

et al., 2017; Tang et al., 2019 for recent reviews).  Hence even if they are 

very successful in solving problems, as e.g. AlphaFold (Senior et al., 2020; 

Jumper et al., 2021) undoubtedly is, current deep learning (DL) systems 
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cannot be expected to tell us anything of interest about human cognition.  

Emulation is not explanation.  Indeed both Marcus (2020) and Friston et al. 

(2022) make this point in their respective critiques of the current state of 

AI; Melloni et al. (2019) do the same from the perspective of neuroscience.

An obvious potential counterexample to the above is developmental 

robotics.  Here, however, the flow of motivating theory is in the human (or 

animal) to AI direction: the goal is to build robots that undergo 

developmental processes, including motivational development and “learning

how to learn,” that we largely understand from prior work with humans and

other animals (see e.g. Cangelosi and Schlesinger, 2015).  Experimental 

platforms like the iCub are just that: experimental platforms.  They are not, 

and are not intended to be, artificial children.7

Demonstrable success in building an AHI with an even minimally 

human-like psychology for scientific reasons would clearly raise ethical 

issues; indeed Institutional Review Boards (IRBs) could be expected to step 

in well before success was demonstrable.8  The ability to register stress is 

widely recognized as foundational to even the most basal psychologies, 

being evident even in bacteria (e.g. Fields, Glazebrook and Levin, 2021).  In 

the language of the Free Energy Principle (FEP), stress is uncertainty, and 

hence the fundamental motivator of cognition (Friston et al, 2022).  An AHI 

with sufficient psychology to have human-like intelligence can, therefore, be

expected to register stress, and even the counterfactual stress – stress 

induced by the imagination of future events – that constitutes suffering.  

Such a system would be one for which the notion of well-being is relevant.  

7  Though this statement summarizes current practice, see e.g. Moravec, H. (1990) 
Mind Children. Cambridge, MA, Harvard University Press for a more radical, posthumanist 
projection.
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These issues come into even greater focus when we consider the 

curiosity-driven (or to be less charitable, boredom-avoidance) reason to 

build AHIs with human-like psychology.  This kind of reason works well for 

climbing mountains and other risky challenges, but the risk has to be to 

oneself.  This would obviously not be true for a machine with human-level 

intelligence.  In this case, we would be forcing risk on to something else: 

the machine.  And there lies the problem.  A machine with human-like 

psychology would be able to suffer (from all kinds of things, just like we do),

and would probably fear death (just like we do).  So, building one because 

we need a challenge is immoral.  Compare: curiosity, boredom-avoidance or 

needing a challenge is an inappropriate reason – though it often the actual 

reason, stated or otherwise – when deciding to get pregnant and have a 

human baby or when deciding to get a dog.  Being bored or loving a 

challenge is not a morally acceptable reason to take on being responsible 

for another life.  Indeed, its immorality is obvious.

What about the mythopoetic reason?  It seems high-minded, but it, 

too, suffers from immorality.  This is obvious when it is noted that the 

mythopoetic reason is about us.  Building a human-level intelligence puts a 

feather in our caps.  But what does it do for the intelligence thus created, 

for the other being?  As with the “because it is there” reason, it places such 

an intelligence at serious risk of being a curiosity, an exhibit, a pet, or a 

slave of some sort.  The goal of “aligning” AI with human values (Markus 

and Davis, 2019; Stray, 2020; Han et al., 2022), for example, explicitly 

renders AIs subservient to human goals and desires, including our human 

desire for control.  Indeed, it is here that the mythopoetic and engineering 

reasons overlap: building an artificial human-like worker is in fact building a

slave, as Čapek’s R.U.R. (1920/2001) makes perfectly clear and Bryson 

(2010), who rejects our moral-hazard position in favor of an a priori 

assumption that AIs will not be conscious, explicitly advocates.  McEwan’s 

Machines Like Me (2019) provides a recent counterpoint: the “artificial 
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humans” are both smarter and more moral than we are, and commit suicide

out of despair.  It is difficult not to think of this when contemplating the sex 

robots, war robots, or nurse robots conceived of as industrial products (see 

Sullins, 2012, 2013a, 2013b, 2014, 2017).  These carry on a long tradition: 

slavery is as old as socially stratified civilization and continues robustly 

today.  According to the United Nations International Labor Organization, 

40.3 million people are now enslaved (see, Hodal, 2019; ILO Report, 2017). 

This number does not include all the dogs, cats, horses, and agricultural 

animals that live horrible lives due to human wants and interests.  The 

history of slavery and other forms of exploitation suggests that once we 

start building intelligent machines, thinking of them as slaves, as unpaid 

servants, etc., will come naturally.9  On any position that acknowledges 

moral hazard, immorality of a monstrous size would then ensue.

Hence, we return to the notion of reinventing the wheel, noting that in

the case of AHIs, the reinvention is not only pointless but cruel.  This, of 

course, is why AHIs have mythopoetic status, as Hollywood continually and 

tiresomely reminds us.  Not noticing this can only be considered a massive 

failure of science-society communication on the part of the AI community.10

3. Human Intelligence Is Not General Intelligence

10 We have focused here on moral consequences for the AI systems themselves.  There 
are obviously also moral consequences for us.  One could argue that the principles outlined
in the IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and 
Autonomous Systems have thus far been recognized mainly by their violation.  Creating AIs
that replicated the worst of human morality, for example, would obviously be grossly 
immoral; see e.g. Bender, E. M., T. Gebru, A. McMillan-Major and S. Shmitchell (2021) On 
the dangers of stochastic parrots: Can language models be too big?  In: Conference on 
Fairness, Accountability, and Transparency (FAccT ’21), March 3–10, 2021, Virtual Event, 
Canada. ACM, New York, NY, USA, 14 pp; https://doi.org/10.1145/3442188.3445922 or 
Birhane, A. and J. van Dijk (2020) Robot rights?: Let's talk about human welfare instead.  
AIES '20: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, February 
2020,  pp. 207–213; https://doi.org/10.1145/3375627.3375855.
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We now turn, as a second preliminary, to the question of how, 

precisely, to characterize HI and GI.  Abstracting from psychology, it is 

relatively straightforward to characterize an ideal GI: an ideal GI is a 

system that can solve any problem that it can recognize as a problem, up to 

resource and computability constraints (but see Ji et al., 2021 for an 

argument that Turing computability can be exceeded).  In the increasingly-

popular language of the FEP (Friston, 2010; 2013), an ideal GI is a system 

in the limit as time-averaged Bayesian surprisal (i.e. net prediction error) 

approaches zero – any momentary upticks in Bayesian surprisal could be 

quickly dealt with by problem-solving.  This characterization has a trivial 

special case, the case in which the “GI” inhabits an environment in which 

interesting problems – problems that are unanticipated and require multi-

step problem solving –never arise.   Interesting GIs, and hence interesting 

AGIs, would be systems somewhere in the vicinity of this limit of low 

average surprisal that inhabit interesting, problem-rich environments.  “GI” 

in practice is, therefore, a continuum, not a bright line.  We will, in what 

follows, only be interested in GIs that can recognize (and hence solve, up to 

constraints) at least all the problems that we can recognize. 

Human intelligence is often held up as an exemplar of General 

Intelligence, though with the proviso that HI may also be less than some 

feasible GI (e.g. Goertzel, 2014).  Setting aside gods, the Western 

philosophical tradition since Descartes tends to regard HI as the only extant

exemplar of GI.  Human intelligence does, indeed, exhibit significant 

generality.  Humans can abstract, categorize, deduce, draw conclusions, 

dream up counterexamples, explain, infer, intuit, reason, and combine all of 

these very quickly into a thought.  Human languages are syntactically 

complete.  Humans are good enough at computation to have invented the 

theory of computation, including its metatheory.  Humans are claimed by 

some to be more powerful than Turing machines, though see Dietrich et al. 
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(2022, §2.1) for a thorough criticism of Lucas’ (1961; 1996) classic version 

of this argument. 

Is, however, HI general in the sense intended by GI?  Can humans 

solve all the problems, up to resource and computability constraints, that 

they can recognize as problems?  There are clearly human-niche problems 

that humans have not yet solved, many of them quite serious and long-

standing.  Are these problems – e.g. the problems of peaceful co-existence, 

population control, and environmental degradation – solvable by humans, 

even in principle?  What does “in principle” mean here?

To ask what “in principle” means is to raise the problem of how the 

social and affective components of human cognition – in short, the 

components that render us 4EA systems – both enable and constrain 

problem-solving capability.  Hence it requires including human psychology, 

particularly motivational psychology, in our notion of HI.  Asking about 

actual human problem-solving capability also raises the question of 

variation, not just of some testable measure of problem-solving ability along

one or more dimensions but of core capabilities such as imagination, 

intrinsic motivation, memory, attention management, or event-oriented 

“mental time travel” in one or both directions.  Proponents of AHI are, we 

can assume, always intending to replicate “the best” examples of HI, not 

just in game-playing challenges but across all applications of intelligence.  

Is, however, the idea of “the best” HI even coherent?  It is implausible that 

one human could be “the best” in every problem-solving domain in which 

humans are capable, including not just theoretical and practical but also 

moral problem solving.  Hence “the best” must be an abstraction, an 

idealized combination of “bests” in different domains.  Is this, however, a 

coherent idealization?  Does it make sense, even in principle, to assume 

such an idealization for human intelligence?
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This is not a question for speculation, but a question for experimental 

psychology and neuroscience.  It is a question of means along axes of 

variation, and whether they overlap, either in fact or in some plausible 

ideal.  Consider the Big 5 personality dimensions (Digman, 1990): openness,

conscientiousness, extraversion, agreeableness, and neuroticism.  A “typical

personality” would be someone within some fixed distance (e.g. 1 sigma) of 

the mean on each of these dimensions.  If the means of the distributions are

sufficiently separated in the population, however, no such “typical 

personality” would exist.  It is not clear, moreover, that a mean value on any

of these dimensions is optimal, or even whether an “optimal” personality 

can be defined in any context-independent way.  

No dimensional analysis of human core cognitive capabilities with the 

level of acceptance of the Big 5 exists.  However, analyses of variation in 

everyday, uninstructed experience (Heavey and Hurlburt, 2008), 

autobiographical memory (Fan et al., 2022), mental imagery (Milton et al., 

2021), and general cognitive functions (Kanai and Rees, 2011) all suggest 

the existence of broad distributions across the human population.  The idea 

of broad variation is reinforced by studies of variation along spectra 

associated at their extremes with autism and psychosis (e.g. Crespi and 

Badcock, 2008) and the correlation of such variants with default behavior 

and career choices (see Fields, 2011, for review), and by studies of variation

along spectra associated with empathy and sociopathy, and hence with 

moral capability (Sapolsky, 2017).  Such studies reinforce the everyday 

observation that humans who are very good in one domain (science, art, 

persuasion, etc) may be very poor in others (social relations, decision 

making, empathic caring, etc).  They suggest that even the idea of a 

“neurotypical” human may be of little use outside of the narrow, clinical 

context in which it originated.11  If this is the case, however, “human 

intelligence” may not be coherently definable for individual humans, groups 

of humans, or even idealizations of (groups of) humans.  It may be at best an
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informal notion, a vague summary of a list of general capabilities – e.g. the 

five listed by Laland and Seed (2021) – that characterize most humans to 

some extent or other.  Even setting issues of general psychology aside, such 

a weak notion of HI can have only minimal relevance to any useful idea of 

AGI.  Indeed, in the space of all possible intelligences – something we may 

not even be equipped to conceive of in any detail – the component spanned 

by all possible varieties of human intelligence, including moral intelligence, 

may be small.

One can also ask what happens if HI, under even a vague definition, is

nudged at the population level in the direction of some hypothesized GI.  

This introduces a social psychology question: what is the range of social 

behavior that can reasonably be considered human social behavior?  This 

question is particularly pressing in the moral sphere, where humans, 

particularly groups of humans, exhibit undesirable characteristics with very 

long evolutionary histories (e.g. Wrangham and Peterson, 1997; Sapolsky, 

2017).  Han et al. (2022), for example, speak of the “moral progress” of 

humans as a species or population as an essential component of AI 

alignment.  How soon would such a “nudged” intelligence at the population 

level, in the moral or any other sphere, cease to count as a human 

intelligence?   Would a “human” society that no longer elevated immoral 

individuals to positions of leadership, and refused to follow – refused to 

enthusiastically follow – the commands of such individuals still be 

recognizably human? A society in which such a change was implemented 

would be a historical novelty.  Humans have a great tolerance for the 

prodigal, but stretching human psychology too far towards an ideal can 

generate an “uncanny valley” (e.g. Saygin et al., 2012) on the suprahuman 

side.12  It is not clear that we would be capable of regarding a suprahuman 

GI – even one that just maximized known human capabilities simultaneously

– as fully human at the individual level; here again McEwan (2019) is a 

17



useful study of this question.  Recognizing suprahuman capabilities at the 

broad social level as “still human” may prove even more difficult.  

4. A New Goal for AI: Composite Intelligence

The extraordinary diversity of cognitive and affective capabilities 

across the human population is increasingly seen as selectively 

advantageous at the group level and hence as maintained over deep 

evolutionary time (Nettle, 2006; Holmes and Patrick, 2018).  This has an 

obvious correlate: optimal problem solving will typically be achieved by 

groups, not individuals (Graesser et al., 2018; Dubova, Galesic and 

Goldstone, 2022).  The parallel between this social-scale phenomenon and 

the requirements for cooperation between phenotypically-diverse 

individuals in the construction of a multicellular organism (Strassmann and 

Queller, 2010) are similarly obvious, leading to the proposal that all 

intelligence is fundamentally composite or collective (Levin, 2021; 2022, 

Fields and Levin, 2022).  We therefore suggest that “human intelligence” is 

properly thought of as a composite (HI, OI), where OI is some “other 

intelligence” that may be human but may be as simple as a physical system 

(a notebook, a laptop) supporting stigmergic memory.  Conceiving of human

intelligence as composite in this way, we will argue, reframes the goal of AI 

away from replacement (of HI) and towards augmentation (of the composite

(HI, OI)), as suggested by both Brynjolfsson (2022) and Friston et al. (2022).

This new goal is already being pursued in the context of human-robot 

collaboration (Vysocky and Novak, 2016; Franklin et al., 2020), but has yet 

to be taken up broadly within mainstream AI.

If the proper goal of AI is not to replicate HI (whatever that would 

mean), but rather, as we suggest, to maximally complement communities of 

diverse HIs, then AI is free to pursue one of its most distinctive 
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characteristics: its difference from HI.  We elaborate on this in the two 

sections below.  We then turn to a critical way in which successful AIs need 

to be like humans: they too need to be team players.  In particular, they 

need to be capable of “playing” on diverse teams, e.g. teams including both 

humans and other, very different AIs.  Being a capable diverse-team player 

requires capabilities that AIs currently do not have, or have only 

rudimentary versions of (compare, e.g., Kraus, 1997 and Dafoe et al., 2020 

on cooperative problem-solving capabilities).  It requires, in particular, both 

robust models of the self and others and a capacity to care about the goals 

of both oneself and others.  It requires, in other words, both theory of mind 

and empathy (Doctor et al., 2022).13  Team-capable AIs need, in particular, 

the abilities to recognize when a problem they are trying to solve is too 

hard, to determine what “OI” they need to approach for assistance, and to 

locate, teach, design and build, or otherwise find that OI.  They need to be 

“like us” in having an ability to creatively supplement their own 

intelligence.  When employed in procedural, technical, or abstract domains 

such as law, engineering, or science, they also, clearly, need to be like us in 

the ability to explain what they are doing and why, and hence to explain why

they need help from some OI, artificial or human.  Diverse-team AI, in other 

words, requires explainable AI (XAI) (Arrieta et al., 2020; Samek et al., 

2021).  Here again, ToM skills are critical (Taylor and Taylor, 2020).

4.1.  Minding the gaps: understanding where HI fails

Computers were first developed as fast, accurate calculators.  This 

responded to a specific need: although humans (mainly women) were 

employed as “computers” until well into the 1960s, humans are not, aside 

from a few spectacular exceptions, fast, accurate calculators.  Robots were 

first developed as tireless, reliable, accurate performers of repetitive 

mechanical tasks.  This, too, responded to a specific need: humans have 
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been employed (or forced as slaves) to perform repetitive mechanical tasks 

since the invention of agriculture, but humans are not tireless, reliable, 

accurate performers of such tasks.  Successful applied AI, in general, does 

not replace humans in unnecessary tasks, or in tasks that humans are good 

at.  Successful applied AI replaces humans in necessary tasks that humans 

are relatively bad at.14  For example, autonomous-vehicle control systems 

will eventually replace human drivers because humans are, by and large, 

bad drivers – humans are often distracted, discourteous, and notoriously 

disrespectful of rules.  While autonomous systems do not yet have, for 

example, sufficient pattern-recognition ability to detect hazards humans can

detect (e.g. Nyholm, 2020), these abilities can rationally be expected to 

improve.   Humans, on the other hand, cannot rationally be expected to 

become less distracted, more courteous, and more respectful of the rules of 

the road than they now are.  The future replacement of human by AI drivers

is controversial, however, not just because bad driving is still lucrative, but 

because bad driving is still enjoyable.

Reframing AI as maximizing the capability of (HI, OI) systems 

transfers the need to understand where and how HI fails – or where and 

how HI is nonoptimal – from outside the purview of AI to centrally within it. 

Systems that actively monitor the attention of human users in critical 

settings such as the cockpit provide an example (Lutnyk, Rudi and Raubal, 

2020). Fortunately, since Tversky and Kahneman (1974) and Simon (1982), 

the systematic study of human problem-solving failure has become a 

mainstream component of both cognitive psychology (for reviews, see 

Masgood, Finegan and Walker, 2004; Benjamin, 2019) and operations 

research (Endsley, 2012).  Compensating for cognitive biases and coping 

with ubiquitous motivated reasoning constitute major, largely-unrecognized,

opportunities for AI.  AIs can be successful in these areas precisely to the 

extent that they are not like us.
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A particular challenge in this regard, one that bears on the discussion 

of ToM below, is the deeply-ingrained human resistance to evidence and 

imperviousness of beliefs to argumentation (Henriques, 2003; Mercier and 

Sperber, 2011, 2017; Lewandowsky and Oberauer, 2016).  AI “assistants” 

capable of counteracting these tendencies would be playing, in fact, the role

of advisors or mentors.  Such capabilities are far beyond current AI, which 

indeed sometimes reinforces existing biases instead of countering them, but

are needed if (HI, OI) systems are to approach GI as a goal. 

4.2.  Maximizing (HI, OI)

As noted earlier, humans have never worked alone.  Intelligent 

problem solving is a social affair.  Even great scientists and mathematicians 

who seemed to have worked alone have “stood on the shoulders of giants.”  

All of human culture, in this regard, serves as a shared stigmergic memory.

It is, therefore, not surprising that AI systems have had their greatest 

success not by replicating human capabilities, but by offering supra-human 

capabilities to human teams.  AI systems are not alone in this: memory 

systems such as books offer supra-human capabilities, as do essentially all 

technological devices.  Where AI systems excel is in offering supra-human 

attention, learning, inference, and problem-recognition capabilities.  

Aircraft autopilots, for example, are valuable because they have superior 

attention and faster problem recognition, and can take faster inference-

driven corrective action, than (most) human pilots.  Autopilots can fail 

spectacularly, but do so less often than humans do.  These are the 

characteristics looked for in all autonomous-vehicle applications, with on-

the-fly learning a bonus. 
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Learning comes to the fore in deep learning systems, particularly in 

scientific systems such as AlphaFold (Senior et al., 2020; Jumper et al., 

2021).  Such systems have now been deployed in many settings and 

domains.  Their performance clearly exceeds that of teams of humans, even 

teams of humans equipped with expensive apparatus.

While an autopilot functions in some sense as a real-time colleague, a 

system such as AlphaFold does not.  A human operator sets a goal and 

(effectively) leaves; AlphaFold works to find a solution, and then informs the

operator.  This is “collaboration” only in a diachronic sense: one 

collaborator sets the goals (or gives the orders) while the other collaborator

does the work.  Restricting the human role to goal-setting is reminiscent of 

standard scientific computing in the pre-interactive, batch-job era.  It is 

reflected in the goal of fully autonomous vehicles, perhaps with a batch 

controller at some distant location.  It only works in settings in which the 

goals can be fully specified in advance. 

It is not clear whether this diachronic model, in which humans and AI 

systems each solve their problem components alone, with minimal 

communication, is capable of optimizing (HI, OI) capabilities, just as it is not

clear that such a diachronic interaction can optimize the performance of 

human teams.  While the broad, overall objectives of a project may be 

specified in advance, a synchronic model in which humans and AIs work 

jointly and interactively on each (major) aspect of a problem may be 

required, especially in cases where creative solutions are needed.  Such 

real-time collaboration may include collaborative identification of 

intermediate goals and negotiation of intermediate problem-solving 

strategies.  Humans and AIs may sometimes work on separate parts of a 

problem independently, just as human collaborators do.  They may 

sometimes need to brainstorm, just as human teams do.  While diachronic 

models still require significant advances for optimal performance even in 
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appropriate domains – AI systems still need better failure or inadequate-

generalization detectors and XAI capabilities – synchronic models can be 

expected to require substantially better ToM (both self- and other-directed) 

and communication capabilities as discussed below.

A further issue for (HI, OI) problem solving, one that touches on the 

ethical concerns raised above, is that of power.  Humans at present exercise

complete control over resources, and can simply turn off the power if they 

do not like or agree with what an AI colleague is doing.  While in cases of 

conflict this may remain a valuable last resort (here HAL (Clarke, 1968) 

comes to mind), such lopsided control remains ethically troublesome (again 

assuming moral hazard as above) in all other situations.  Human control of 

resources has a flip side: the potential for AI control of – and ability to 

destroy – critical knowledge.  Current DL systems already approach this 

level of control, particularly systems that learn autonomously in an open 

environment.  Hence safe-guards are needed that prevent both humans (by 

accident or by intentionally “pulling the plug”) and AI systems (out of spite, 

perhaps) from destroying hard-to-acquire or mission-critical data obtained 

by DL or other automated means.  Procedures for resolving conflicts and 

preventing stalemates will, one can expect, be just as necessary for human

—AI problem-solving teams as they are for purely human teams.

4.3.  AIs need umwelten to be diverse-team players

What is it about the team, the group, or the community that enhances 

problem solving?  One answer is that in addition to knowledge and skills, 

each participant brings a certain point of view to the problem-solving 

process.  Each participant brings to the problem-solving event individual 

perceptions and interpretations of the problem, the problem’s context, and 
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its consequences.  Working out how to accommodate each of these points of

view is a key component of solution-finding.

Biology has a technical term available to what we just called a point of

view: umwelt (von Uexküll, 1957). ‘Umwelt’ often translated as “life-world” 

refers to the world experienced by a particular organism, as it is 

experienced by that organism.  Similar organisms living in similar niches 

will have similar experiences, but the umwelt of each individual is unique to

that individual.  Radically differing individuals will have radically differing 

umwelten.  All umwelten are unique because the individuals are unique, not

just structurally and functionally, but historically and experientially.  The 

idea of an umwelt thus both extends and personalizes the traditional idea of 

meaning.  While it is clear that AI systems need meaning (Froese and 

Taguchi, 2019), each also needs its own umwelt.

The difficulty of understanding another organism’s umwelt underlies 

Nagel’s (1974) famous reflection on the experiences of bats.  Understanding

the umwelten of other organisms is, however, part of any biologist’s job 

description, just as understanding the umwelten of diverse other people is a

crucial requirement for living in human society.  It involves not just 

understanding what another organism can perceive and do, but critically, 

what another organism is capable of remembering or caring about (Levin, 

2021; 2022).  As Nagel’s work emphasizes, understanding another being’s 

umwelt in this 3rd-person sense is not the same as experiencing it oneself.  

While (most) humans have the empathetic and imaginative skills to at least 

approximate another human’s experiences, this may not translate even to 

other mammals, let alone other organisms in general.  Hence in practice, 

“understanding” the umwelt of another is a matter of understanding 

capabilities.
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Artifacts, including current AI systems, are not generally considered 

to have umwelten, at least in part because they are not generally 

considered conscious (for extensive discussion, see Dietrich et al., 2021).  

However, if “umwelt” is read as task environment – a reading quite 

consistent with its usage in biology –  AI systems and even ordinary non-AI 

computing systems have umwelten.  Understanding how AIs can function as

members of diverse teams, however, requires understanding their 

umwelten, including what they detect about their environments, what 

actions they can take on their environments, and what they can care about. 

This includes, in particular, what they can detect about, and how they 

reason about, their coworkers on the team, whether these are humans or 

other AI systems.  

It is often, moreover, assumed about both other organisms and 

machines that “the environment” is our environment, that they share our 

umwelt as well as being participants in it.  This is, implicitly or sometimes 

explicitly, an assumption that our human umwelt is “objective” or observer 

independent.  This is, of course, a contradiction in terms: an umwelt is 

organism- and even individual-specific by definition.  Considering the 

umwelten of other animals, or of plants or even microbes, makes it clear 

how differently they perceive even the physical world; when the extensive 

human virtual world is included, the differences are even more stark.  The 

same lessons apply to AIs.  Even if an AI system can “see” the same 

“objects” that we do, we cannot assume that it identifies those objects in the

way that we do, that it assigns the same properties to them that we do, or 

that they have the same meaning or significance to the AI system that they 

have to us.

Deep learning systems provide a timely example of the need for 

thinking clearly about the umwelten of artifacts.  Informally, we think of the 

“world” of AlphaFold as comprising protein sequences and structures.  
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These are, after all our inputs and outputs of interest.  AlphaFold, however, 

knows nothing about proteins; its world is a world of correlations between 

bit strings, bit strings that it divides only into inputs and outputs.  This 

naiveté about the semantics – effectively, the background knowledge – that 

we assign to these bits strings is in part an advantage: AlphaFold can “see” 

patterns that we cannot.  It is, of course, also the deep source of the XAI 

problem.  AlphaFold encodes protein sequences in a much higher-

dimensional representation than we use, detects relationships in that high-

dimensional representation that we do not and perhaps cannot encode in 

our lower-dimensional representations, and does not have the semantic 

knowledge needed to describe its representation in our language.  

Word-association learners such as GPT-3 (and more recently, 

ChatGPT) provide a similar example.  The world of GPT-3 is not language, 

and certainly not conversation, though it is often interpreted as such.  The 

world of GPT-3 is a world of correlations between words and phrases, as its 

easily-revealed lack of semantic knowledge illustrates (e.g. Floridi and 

Chiriatti, 2020).  To claim that GPT-3’s evident knowledge of its world gives 

it insight into our world (as suggested, e.g. by Chalmers, 2020) is simply a 

mistake (Bender et al., 2021).  It confuses GPT-3’s umwelt with ours.15

The XAI problem for DL systems stems from the fact that we are not 

DL systems, and so we cannot make sense of DL system training sets – of 

indeed, machine-learning (ML) training sets in general – in the way that DL 

systems can.  It is exacerbated by the fact that training is (not necessarily 

phenomenal) experience; identical systems with different training sets 

cannot be expected to compute the same function.  The umwelten of ML 

systems, especially ML systems that learn autonomously, are unique, just as

they are for organisms.  Absent a principled theory capable of assigning 

semantics to arbitrary functions (see Marcianò et al., 2022 for an example 
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of what such a theory could look like), XAI for DL systems is effectively 

experimental cognitive psychology, as Taylor and Taylor (2021) suggest.

If AI systems are to become diverse-team players, one of the first 

requirements that must be addressed is expanding their umwelten to 

include us, and any other team members with which they are to cooperate.  

Other-system identification is a common feature of distributed AI systems. 

In the multi-agent system described by Steels (2001), for example, a 

language is evolved by a collection of distributed, identified agents; unlike 

in the case of GPT-3, this language has semantics for the agents themselves 

(at least in some sense).  Security-system issues, e.g. trust, are clearly 

relevant in any such setting, as are representations of other agent’s goals 

and abilities (Dafoe et al., 2020).  Here again, the analogy between AI and 

biology is obvious (Levin, 2021; 2022; Fields and Levin, 2022).

5. Concluding thoughts - whither AGI?

We have argued here that a considerably broader vision than 

“replicating human-level intelligence’’ is needed to approach AGI.  As 

discussed in §2 and §3 respectively, the very idea of AHI is fraught with 

ethical difficulties, and “human intelligence” may not even be a well-defined

target.  It is not, in summary, clear that HI is even on the path toward AGI.

One important aspect of HI, however, clearly is on the path to AGI: the

ability to participate in diverse-team problem solving.  While some of the 

capabilities for team participation have been developed in the context of 

distributed AI systems, much work remains to be done.  Understanding the 

experienced worlds – the umwelten – of AI systems and other artifacts will 

be key to developing the ToM and empathic or caring capabilities needed 

for effective teamwork, particularly in synchronic settings.  The 
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increasingly-deep analogies, and in cases of hybrid bio-AI systems, explicit 

overlaps, between biological and AI versions of, and approaches to, these 

problems can be expected to be increasingly consequential.

From a practical perspective, we are most interested in human-

defined problems, human-set high-level goals, and the capabilities of 

human-in-the-loop teams.  As AI systems become increasingly capable, the 

extent to which humans remain “in charge” of all aspects of problem solving

may start to change.  We may, for example, develop systems that can 

recognize problems that we cannot.  The XAI problem, in this case, becomes

the problem of whether they can explain to us not just what they are doing 

and why, but even what problem they are working on.  Should this ever 

occur, AI will indeed have taught us something deep about human 

intelligence.
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loop system: without a human to organize a training set and a human to ask questions, it 
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