A LETTERS JOURNAL EXPLORING
THE FRONTIERS OF PHYSICS

OFFPRINT

Whether a quantum computation employs
nonlocal resources is operationally undecidable

CHRIS FIELDS, JAMES F. GLAZEBROOK, ANTONINO MARCIANO
and EMANUELE ZAPPALA

EPL, 151 (2025) 48001

Please visit the website
Wwww.epljournal.org

Note that the author(s) has the following rights:

— immediately after publication, to use all or part of the article without revision or modification, including the EPLA-
formatted version, for personal compilations and use only;

— no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but
not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.

For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS JOURNAL EXPLORING
THE FRONTIERS OF PHYSICS

AN INVITATION TO

SUBMIT YOUR WORK

The Editorial Board invites you to submit your Letters to EPL

Choose EPL, and you'll be published alongside original, innovative Letters in all
areas of physics. The broad scope of the journal means your work will be read by
researchers in a variety of fields; from condensed matter, to statistical physics,
plasma and fusion sciences, astrophysics, and more.

Not only that, but your work will be accessible immediately in over 3,300 institutions
worldwide. And thanks to EPL's green open access policy you can make it available
to everyone on your institutional repository after just 12 months.

Run by active scientists, for scientists

Your work will be read by a member of our active and international Editorial Board,
led by Bart Van Tiggelen. Plus, any profits made by EPL go back into the societies
that own it, meaning your work will support outreach, education, and innovation in
physics worldwide.

epljournal.org



A LETTERS JOURNAL EXPLORING

THE FRONTIERS OF PHYSICS

Manuscripts published
received

downloads on average

Perspective papers received

downloads on average

“Editor’s Choice”
articles received

downloads on average

We greatly appreciate

the efficient, professional
and rapid processing of our
paper by your team.

Cong Lin
Shanghai University

epljournal.org

Four good reasons to publish with EPL

L

2]
©
4

International reach — more than 3,300 institutions have access to
EPL globally, enabling your work to be read by your peers in more than
90 countries.

Exceptional peer review — your paper will be handled by one of the
60+ co-editors, who are experts in their fields. They oversee the entire
peer-review process, from selection of the referees to making all final
acceptance decisions.

Fast publication — you will receive a quick and efficient service; the
median time from submission to acceptance is 78 days, with an
additional 28 days from acceptance to online publication.

Green and gold open access — your Letterin EPL will be published on
a green open access basis. If you are required to publish using gold
open access, we also offer this service for a one-off author payment.
The Article Processing Charge (APC) is currently €1,480.

Details on preparing, submitting and tracking the progress of your manuscript
from submission to acceptance are available on the EPL submission website,
epletters.net.

If you would like further information about our author service or EPL in general,
please visit epljournal.org or e-mail us at info@epljournal.org.

European Physical Society

ERS

@sciences IOP Publishing

10P Publishing

di Fisica

Societa Italiana di Fisica EDP Sciences

epljournal.org



A LETTERS JOURNAL EXPLORING
THE FRONTIERS OF PHYSICS

August 2025

EPL, 151 (2025) 48001

doi: 10.1209/0295-5075/adfd0e

www.epljournal.org

Whether a quantum computation employs nonlocal resources is
operationally undecidable

Curis FIELDs!®) | JAMES F. GLAZEBROOK?, ANTONINO MARCIANO? and EMANUELE ZAPPALA*

L Allen Discovery Center, Tufts University - Medford, MA 02155, USA
2 Department of Mathematics and Computer Science, Eastern Illinois University - Charleston, IL 61920, USA
3 Center for Field Theory and Particle Physics & Department of Physics, Fudan University - Shanghai, China
4 Department of Mathematics and Statistics, Idaho State University - Pocatello, ID 83209, USA

received 2 February 2025; accepted in final form 19 August 2025
published online 2 September 2025

Abstract — In the classical theory of computation, e.g., in the Turing Machine model, compu-
tational processes employ only local space and time resources, and their resource usage can be
accurately measured by us as users. General relativity and quantum theory, however, introduce
the possibility of computational processes that employ nonlocal spatial or temporal resources, rais-
ing the question of how these relate to classical resources. Operational, i.e., device-independent,
protocols to certify the use of entanglement as a resource are well known. We prove, however, that
the independence of spatially separated systems cannot be operationally certified. The verifier (C)
in a multiple interactive provers with shared entanglement (MIP*) protocol cannot, therefore,
operationally demonstrate that the “multiple” provers are independent, i.e., cannot operationally
distinguish a MIP* machine from a monolithic quantum computer. Thus C cannot operationally
distinguish a MIP* machine from a quantum TM, and hence cannot operationally demonstrate
the solution to arbitrary problems in RE. Any claim that a MIP* machine has solved a TM-
undecidable problem, e.g., that of J1 Z. et al., Commun. ACM, 64 (2020) 131, is therefore
operationally circular, as the problem of deciding whether a physical system is a MIP* machine is
itself TM-undecidable. We then prove a similar result showing that whether a system employs a
closed time-like curve (CTC) as a resource is operationally undecidable. In such settings, therefore,
theoretical analyses of resource usage cease to be reliable indicators of practical computational

capability.

Copyright © 2025 EPLA

All rights, including for text and data mining, Al training, and similar technologies, are reserved.

Introduction. — Computational complexity character-
izes the usage of spatial and temporal resources by com-
putational processes. As users of such processes, we are
interested in their resource requirements as measured by
us. For example, we want to know whether a compu-
tation will halt in polynomial time as measured by our
clocks. In the classical theory of computation, e.g., in the
Turing Machine (TM) model [1], computational processes
employ only local space and time resources, and their re-
source usage can be accurately measured by us as users.
General relativity and quantum theory, however, intro-
duce the possibility of computational processes that em-
ploy nonlocal spatial or temporal resources. One notable
example is the ability of multiple, otherwise-independent,
interactive provers (MIP) that share entanglement as

(3)E-mail: fieldsres@gmail.com (corresponding author)

a resource (MIP*) to solve, with probability approach-
ing unity, TM-undecidable problems such as the Halt-
ing Problem (class RE). This is the celebrated result
stating that MIP* = RE [2]. A second example is the
use of closed time-like curves (CTCs), which enable even
otherwise-classical computers to employ arbitrary tempo-
ral resources as measured in their reference frames, and
hence to solve problems that are exponential in time (class
NEXP) for TMs [3-5].

Operational, i.e., device-independent, protocols for cer-
tifying the use of entanglement as a computational re-
source are well-known (see, e.g., [6] for a general review
and [7] for the particular case of quantum-key distribu-
tion). We show here that while such protocols can cer-
tify the use of quantum resources, they cannot certify
that such resources are used nonlocally in either space
or time. In the equivalent game-theoretic language, we
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show that whether players in a nonlocal game employ
nonlocal strategies is undecidable by the referee of the
game. We demonstrate these results in the generic oper-
ational context of a local operations, classical communi-
cation (LOCC) protocol [8], in which quantum systems,
interpretable as “agents” or “processes” or “players” Al-
ice (A) and Bob (B) communicate via both quantum and
classical channels traversing an environment (F), and in
which the classical communication channel is via a third
quantum system, interpretable as a “user” or “verifier” or
“referee” Charlie (C'), who is able to turn on, or off, an
interaction that decoheres the quantum channel between
A and B. Canonical Bell/EPR experiments in which C
both controls the source of entangled pairs observed by A
and B, and tests the observations recorded by A and B for
violations of the Clauser-Horne-Shimony-Holt (CHSH) in-
equality [9] have this form [10]; indeed, this “CHSH game”
is the canonical device-independent protocol.

Following a brief review of the relevant background, we
begin by showing that C' cannot operationally demon-
strate, using just data received from A and B, that the
joint state |AB) is separable. This result is independent
of C’s manipulations of E. From this it immediately fol-
lows that the verifier (C') in a multiple interactive provers
with shared entanglement (MIP*) protocol cannot oper-
ationally demonstrate that the “multiple” provers are in-
dependent, i.e., cannot operationally distinguish a MIP*
machine from a monolithic, i.e., localized quantum com-
puter. As the latter are known to be TM-equivalent [11],
this shows that C' cannot operationally distinguish a MIP*
machine from a quantum TM, and hence cannot opera-
tionally demonstrate the solution to arbitrary problems in
RE. Expressed in the language of constraint satisfaction
problems (CSPs) [12], C' cannot operationally demonstrate
independence between constraints, and hence cannot op-
erationally identify partial solutions. We then employ the
limit as C' — F to show that a channel from A to B that
is classical, and therefore causal, in the spacetime coordi-
nates employed by C' may be a CTC in the coordinates
employed by the joint system AB. Hence C' cannot opera-
tionally determine whether computations implemented by
AB employ CTCs as a resource. We conclude that while
the space and time complexity of classical computing can
be given a clear operational meaning, this is no longer the
case in any setting involving nonlocal resources. In such
settings, therefore, theoretical analyses of resource usage
cease to be reliable indicators of practical computational
capability.

Background. —

Nonlocal games. ~ We commence by recalling what is
meant by a nonlocal game, a concept commanding a spe-
cial status in quantum information theory. A mnonlocal
game, in its basic form, unfolds via the interaction of three
parties: two noncommuting players or provers A and B
and a verifier or referee C'. The players A and B are al-
lowed to communicate classically before the start of play,

but not after; they are also allowed to share an arbitrary,
bipartite state. A verifier C' samples a pair of questions
from some distribution, and then sends one of them to each
of A and B separately. Each of A and B answers classi-
cally to the verifier. They win the game if the questions
and answers satisfy a given predicate. Each of A and B
knows the distribution of the questions and the predicate.
The quantum value is the supremum of the probability
that the players win the game (for generalizations to fully
nonlocal quantum games with allowable noise and further
details, see, e.g., [2,13,14]).

The above description can be extended from two provers
to multiple provers. In a multiple interactive prover (MIP)
game, first introduced in [15], we have multiple provers
who are able to communicate with each other prior to a
problem being posed but not after, that try to convince a
polynomial time verifier that a string = belongs to some
language L. The class MIP(p, k) indicates p players with
k rounds. It has been shown that considering two provers,
i.e., p = 2 is always seen as sufficient; hence all such games
can be represented in MIP(2, k) (often with k£ = 1) [15,16].
If shared entanglement is permitted, then we arrive at the
class MIP* introduced in [17]. As pointed out in [12] for
the case of CSPs, entanglement permits provers to execute
correlations that cannot be sampled by classical provers,
i.e., to violate the CHSH inequality. This improved ability
on the part of the provers encourages the verifier to set
harder tasks. A one-round MIP or MIP* is equivalent to
a family of nonlocal games!.

The ground-breaking result of Ji et al. [2] is that MIP*
= RE, the latter being the class of recursively enumer-
able languages, i.e., the class of languages £ equivalent to
the Halting problem [20]. In terms of quantum values, as
noted in [14], a consequence of the result of [2] is that ap-
proximating the quantum value of a fully nonlocal game is
undecidable. Crucially, the operational configuration that
is employed in [2] to define a MIP* machine is a LOCC
protocol: the two independent, and therefore separable,
provers (A and B) communicate classically via a TM (or
user) verifier C' that poses problems and checks answers
while sharing an entangled pair as a quantum commu-
nication channel Q). Effectively, it is sufficient to prove
the main result for MIP*(2,1), i.e., for two provers in one
round.

LOCC protocols.  The canonical LOCC protocol is a
Bell/EPR experiment, where A and B must agree, via
classical communication, to employ specified detectors in
specified ways, and must later exchange their accumu-
lated data (or transfer to the 3rd party C) in the form
of classical records. We showed in [21] that sequentially
repeated state preparations and/or measurements that

In [18] it is shown how a large class of multiprover, nonlo-
cal games, can be recompiled/reduced to a single-prover interactive
game. In the presence of a TM, without loss of generality, the game
in question can be the one generated by the TM. A large class of
such games are known to be undecidable (as discussed in [19] and
references therein).
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Alice

Classical channel
Bob

Quantum channel

Fig. 1: Diagram representing any LOCC protocol.

employ mutually commuting QRFs (for instance, the se-
quentially repeated preparations and/or measurements of
position and spin during a Bell/EPR experiment), are rep-
resentable, without loss of generality, by topological quan-
tum field theories (TQFTs) [22]. We then showed in [10]
that any LOCC protocol can be represented as in fig. 1, in
which A and B are mutually separable and are separated
from their joint environment E by a holographic screen 4,
implement read/write quantum reference frames (QRFSs)
Q4 and @p, respectively, and communicate via classical
and quantum channels implemented by E.

Note both that A and B being mutually separable is re-
quired for the assumption of classical communication via a
causal channel in E, and that this assumption renders @ 4
and (Qp noncommutative and hence subject to quantum
contextuality [23,24].

Two defining characteristics of LOCC protocols are
worth emphasizing [25]:

1) A and B both perform only local operations. They
must, therefore, each employ spatial quantum refer-
ence frames (QRFs [26]), which we will denote X 4
and Xp, respectively, with respect to which they
specify the position of the quantum degrees of free-
dom that they manipulate, e.g., the positions of the
detectors in a Bell/EPR experiment. These spatial
QRFs must commute with the QRFs Q 4 and @ 5 that
they, respectively, employ to manipulate the quantum
channel, i.e., [Xa,Qa] = [XB,QB] =dey 0.

2) A and B must both comprise sufficient degrees of
freedom for them both to implement their respective
QRFs and to communicate classically. This is, effec-
tively, a large N-limit that assures their separability
as physical systems.

We proved in [25], Theorem 1, that in the operational
setting of a two-agent LOCC protocol [8], two poten-
tial provers, A and B, cannot operationally distinguish
monogamous entanglement from a topological identifica-
tion of points in their respective local spacetimes, one local
to A, and the other local to B. Specifically:

Theorem 1. [25], Theorem 1: In any LOCC protocol
in which all systems are finite, and in which the bound-
ary B between the communicating agents A and B and

their joint environment E is a holographic screen, as the
entanglement made available to A and B by the quantum
channel approaches pairwise monogamy, and hence the de-
coherence in the quantum channel detectable by A or B
decreases to zero, the number of environmental degrees of
freedom of E required to implement the quantum channel
becomes operationally indistinguishable, by A or B, from
zero in the limit of monogamous entanglement.

The proof is straightforward, and can be sketched as
follows. Let g4 and ¢p be distinct (collections of) qubits
accessible only to A and B, respectively, and suppose
lgags) # lqa)lgs), i.e., there is a quantum channel @
shared by A and B. If this channel is embedded in E as
shown in fig. 1, then we can consider the interaction Hgg,
where @ is the complement of @ in E, i.e., QQ = E.
Monogamous entanglement of g4 and gp requires that @
be decoherence-free, i.e., that Hys — 0. This can be
achieved topologically by folding the boundary # in a
way that decreases the degrees of freedom of E used to
implement @ to zero, in which case @) is simply the joint
state |gaqp); see [25] for details.

Theorem 1 has two significant corollaries as noted
in [25]:

Corollary 1. The codespace dimension of a perfect
QECC is operationally indistinguishable from the code di-
mension.

Corollary 2. In any LOCC protocol in which all systems
are finite, and in which the boundary % between the com-
municating agents A and B and their joint environment E
is a holographic screen, a quantum channel implementing
a shared, monogamously entangled pair of qubits (“EPR”)
18 operationally indistinguishable from a topological iden-
tification of the locally measured locations T and xp of
the qubits accessed by A and B respectively (“ER”).

Hence the acclaimed hypothesis ER = EPR [27] can
be recovered as an operational theorem, free of any em-
bedding geometry, with the consequence that the local
topology of spacetime is observer-relative, and providing

a straightforward demonstration of the nontraversability
of ER bridges.

MIP* machines are not operationally identifi-
able. — To apply Theorem 1 to the operational context of
a verifier C interacting with a MIP* machine, we add C
to fig. 1 as shown in fig. 2. Here C' interacts with A and
B separately, and only via a classical channel, as required
by the definition of MIP*.

We assume for convenience that A and B interact,
respectively, with g4 and ¢p in a computational basis
in which single-qubit measurements have eigenvalues in
{+1,—1}; no generality is lost in also assuming that ga
and ¢p are each single qubits. The data items A; and
B; reported by A and B, respectively, using the classical
channel always, therefore, have values in {4+1,—1}. We
also assume that C has sufficient degrees of freedom, and
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Alice

Charlie

Bob Classical channel

Quantum channel

Fig. 2: A verifier C' interacting with a MIP* machine.

in particular, access to sufficient classical memory, to col-
lect sufficient classical data from both A and B to compute
the CHSH expectation value with negligible uncertainty.
The CHSH expectation value is

EXP = |{(A1,B1)) + ((A1, Ba))

+ (A2, B1)) = ((A2, Ba))l, (1)

where ((z,y)) denotes the expectation value for a collec-
tion of joint measurements of =z and y. If EXP > 2,
classical data reported by A and B violate the CHSH in-
equality, indicating entanglement between g4 and gp [9].
For single qubits, the upper limit is EXP < 2,/2, the
relevant Tsirelson bound [28].

By assuming that C has the computational resources to
obtain the relevant classical data from A and B and com-
pute eq. (1), we have assumed that the interaction Hopg
is large enough to provide C' with the required thermody-
namic free energy [29]. We also assume that C' can turn
on, or off, a “decohering” component Hg.. of Hop such
that when Hgy.. # 0, classical data obtained from A and
B satisfy EXP < 2, but when Hg.. = 0, classical data
obtained from A and B are such that 2 < EXP < 2,/2.

Recall from above that a MIP* machine requires inde-
pendent provers that communicate classically with C, i.e.,
fig. 2 represents the interaction of C' with a MIP* machine
only if A and B are separable, i.e., |[AB) = |A)|B) for all
occupied states |A), |B) when the quantum channel con-
trolled by C'is “off.”. We can therefore ask whether C' can
decide operationally, i.e., based on data received from A
and B, whether this condition is met. Note that this ques-
tion of certifying independence, or classicality, is distinct
from the question of certifying entanglement, and has been
generally ignored in the literature, e.g., in the otherwise
comprehensive review [6]. It is, effectively, the question
of whether A and B have a “back quantum channel” not
controlled by C.

We first note an important ambiguity in the classical
data received by C'. Let E¢ be the total environment with
which C interacts, i.e., the composite system Fo = FAB.
From fig. 2, we clearly have Hog = Heg,. -

Lemma 1. C cannot distinguish data A;, B; sent by A
and B wia a classical channel from measurements of Ec
using observables A;, B; that yield outcomes A;, B;.

Proof. Let c4 and cp be the degrees of freedom of the
classical channel with which C directly interacts using A;
and B, respectively. The classical channel is a component
of F, so c4 and cp are degrees of freedom of E and hence
degrees of freedom of Ex. C' can determine by measure-
ment whether violations of the CHSH inequality by the
data A;, B; correlate with turning on, or off, the deco-
hering interaction Hge. with E, but C' cannot determine
the internal interaction Hg or measure the entanglement
entropy S(Ela E2) = 7Tr[TrE2 (pE1,E2)1n(TrE2 (thE'z))]
across any decompositional boundary separating compo-
nents F7; and Es entirely within £. Hence C cannot
demonstrate by measurement that the degrees of freedom
ca and cp are coupled to any components A, B of E¢ that
do not include ¢4 or cpg. O

The fact that all instances of classical communication
require a quantum measurement, by the receiving system,
of some physical encoding of the communicated informa-
tion has previously been emphasized by Tipler [30] among
others. Hence, we have, using the reasoning employed for
Theorem 1:

Theorem 2. An observer C' embedded in an environment
FE cannot determine, either by monitoring classical com-
munication between A and B, or by performing local mea-
surements within E, whether or not A and B are employ-
ing a LOCC protocol with classical and quantum channels
traversing E.

Theorem 2 follows immediately from Lemma 1 above:

Proof. The construction of fig. 2 provides C' with three
items of data: the value of Hye. that C sets and the clas-
sical data A; and B; obtained by measuring ca4 and cp,
from which a value of EXP can be computed. We as-
sume that C' computes FX P using these data. There are
two relevant cases: either EXP < 2 or EXP > 2, the
latter of which is realized if Hgoe = 0. If EXP < 2, C
can infer that A and B are either classically correlated,
which does not require a LOCC protocol since it does
not require an operational quantum channel, or A and
B are correlated through entangled pairs that respect the
CHSH inequality, e.g., Werner states in appropriate pa-
rameter ranges [31]. Hence in this case, C' cannot deter-
mine whether A and B are not employing a LOCC proto-
col, or employing a LOCC protocol without violating the
CHSH inequality. If, on the other hand, EXP > 2, C' can
infer unambiguously that A and B share a quantum chan-
nel. However, C' cannot determine that A and B meet the
separability condition |AB) = |A)|B) required by LOCC,
as EXP > 2 is compatible with A and B being entan-
gled (i.e., |AB) # |A)|B)), which violates the conditions
for a LOCC protocol. Hence C' cannot determine whether
A and B are employing a LOCC protocol, regardless of
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the value of EXP that C' computes from the available
data. O

The fact that C' cannot distinguish, on the basis of re-
ported observational outcomes, between A and B sharing
an entangled state and A and B being components of an
entangled state is indeed well known, and is often dis-
cussed in terms of “conspiracy” or superdeterminism [32].
Treating A and B as “effectively classical” experimenters
jointly manipulating an entangled state while remaining
separable from each other —as required by the definition
of LOCC— amounts, therefore, to a “for all practical pur-
poses (FAPP)” [33] assumption, not a demonstrable fact;
see [34] for a general discussion.

To see that there is no dependence of the above on the
definition of C', consider the limit in which C' — FE, in
which case C has maximal direct access to A and B, and
recall the general notion of entanglement entropy for any
system X:

(2)

where S(X;X5) is defined as in Lemma 1. In fig. 2, F
has no means of determining the location of the boundary
between A and B. Hence we have:

S(X) =def Maxx, x,|x, x,=x S(X1X2),

Lemma 2. E cannot determine the entanglement entropy
S(AB).

Proof. For details, see the discussion and proof of [24],
Theorem 3.1. Briefly, separability of E from the
joint system AB requires a weak interaction between
the two, and specifically that N = Indim(Hg) <
In dim(Hg),In dim(H ap). Therefore % cannot encode,
and hence E cannot measure, dim(H4p). Therefore E
cannot measure the entanglement entropy of any decom-
position of the joint system AB. O

Hence we have an alternative proof of Theorem 2:

Proof. (Theorem 2) Consider the boundary % separat-
ing C' from the rest of E, and let W denote everything
outside of B-. Then by Lemma 2, C' cannot deter-
mine S(W;W;) between any components W, and W; of
W. Hence C' cannot detect any quantum channel in W,
whether between A and B or between any other pair of
subsystems of . O

No component C C E, therefore, can determine S(AB).
Hence C' cannot determine, either by monitoring classical
communication between A and B or by performing local
measurements, that A and B are separable, i.e., C' cannot
operationally distinguish between a MIP* machine and a
monolithic quantum computer. Any claim that a MIP*
machine has solved a TM-undecidable problem, e.g., that
of [2] is, therefore, operationally circular, as the problem
of deciding whether a physical system is a MIP* machine
is itself TM-undecidable.

Timelike data path

CTC data path )
(Hen qubits)

(Mo qubits)

Process |

Fig. 3: Qubits traversing a CTC (left path), and qubits re-
specting chronology (right path).

Closed time-like curves. — We now look at a similar
situation of nonoperational identifiability in a setting in
which closed time-like curves (CTCs) are allowed as com-
putational resources. The idea of CTCs evolved from a
number of cosmological questions, particularly pertaining
to Black Hole theory, such as those concerning the con-
struction and stability of ER-bridges [35,36] (for a histori-
cal survey, see, e.g., [37]). When instrumental in models of
classical computation, CTCs make it possible to solve hard
computational problems in constant time (surveyed in [4]).
David Deutsch [3] demonstrated that quantum computa-
tion with quantum data which is capable of traversing
CTCs provided a new and powerful physical model of com-
putation, along with self-consistent evolution further en-
gendering (quantum) computational complexity [38]. As
pointed out in [5], Deutsch’s approach was to treat a CTC
as a region of spacetime where a “causal consistency” con-
dition is imposed; specifically, a region in which the time-
evolution operator maps a state of the initial hypersurface
to itself. This initial state is, therefore, a probabilistic
fixed point of the time-evolution operator within the CTC,
i.e., a state p such that ®(p) = p for the time-evolution
operator ® within the CTC. Such fixed points are invari-
ants of Markov chains and quantum channels for classical
and quantum computations, respectively [39].

To model computation using a CTC, consider a Hilbert
space of qubits given by H = Hc,®Hsy, where Hp denotes
that of the chronologically respecting qubits, and H+, that
of those which traverse CTCs, as shown in fig. 3 (cf. [3],
fig. 3).

Importantly, the evolution of the CTC qubits is deter-
mined by self-consistency —though the qubits themselves
are an expendable resource [38]. This means that the state
of the CTC qubits at the temporal origin should be the
same as those qubits after the evolution U operator cor-
responding to the process in fig. 3. The density matrix p
as a solution at the former, is given by

P = Tren [U(pin ® p)UT], (3)

where p;, denotes the density matrix of the chronologically
respecting qubits, and Tr., denotes the trace of Hy, [3,38].
Thinking in terms of a quantum circuit, and the solution
in (6), the output pout of the circuit is given by [3,38]:

Pout = rI‘rtv[U(pin & p)UT] (4)

This supposes a “gating-free” system. If gating is ap-
plied, then the consistency condition changes, and a pre-
viously selected temporal origin now becomes arbitrary.
It is shown, however, in [38] that potentially different

48001-p5



Chris Fields et al.

self-consistency solutions are relatable via a standard
change of basis.

Let us now reconsider fig. 2, treating the joint system
AB as an arbitrary quantum computer and setting the
decohering interaction Hop to zero, or equivalently, using
the result of Theorem 1 to treat ) as an internal quan-
tum resource used by AB. We can then ask: what can C
infer about the computational role of the classical channel
connecting the “components” A and B? This channel be-
ing classical requires, by definition, that it is time-like as
measured by clocks in F. Taking the limit as C' — E, the
channel is time-like as measured by C’s clocks. Classical-
ity for C' also requires that the channel has finite length,
i.e., the endpoints of the channel, which we can denote A,
and B, respectively, must be such that d¢ (A, B:) > 0 in
(C’s distance metric dg. However, from Lemma 2 above,
we have that C' cannot determine the entanglement en-
tropy of any state |AB). Hence C' cannot determine that
A and B are separable as discussed above. In particular:

Lemma 3. In any physical setting described by fig. 2, C
cannot determine the distance dap(Ae, B.), where dap is
the metric employed by AB, between the classical channel
endpoints A. and B, on A.

Proof. The systems E and AB are mutually separable
in fig. 2 by construction, so the result follows from the
requirement that mutually separable systems have inde-
pendent, free choice of QRFSs, including space and time
QRFs [40]. O

From Lemma 3, we immediately have:

Theorem 3. In any physical setting described by fig. 2,
C cannot determine whether AB employs CTCs as com-
putational resources.

Proof. From Lemma 3, S cannot show that d 4p(A., B.) #
0. If dap(A., B.) = 0, however, the classical channel from
A, to B, in E is a CTC for AB, and hence is available to
AB as a computational resource. ]

Aaronson and Watrous [5] have shown that both classi-
cal and quantum computers can employ CTCs to solve any
problems in the complexity class PSPACE —this consists
of all problems solvable on a classical TM with a polyno-
mial amount of memory. Theorem 3 shows that the prob-
lem of deciding whether a physical system is a computer
that can employ CTCs as a resource is TM-undecidable.
Thus whether a proffered solution to a PSPACE problem,
for which independent means of verification are unavail-
able, is a solution is TM-undecidable.

From BQP (bounded-error quantum polynomial
time) [41], Araijo, Guérin and Baumeler [42] defined the
class BQP, o1 as a complexity class for efficient process
matrix computation. In showing that unitary CTCs can
solve all of NP, ref. [43] establishes that NP C BQP,cpc-
It remains open whether BQP 1 can solve computable

problems beyond BQP. Our result indicates that this
question cannot be addressed operationally.

Discussion. — We have shown here that whether quan-
tum, or in the case of CTCs even classical, computers
employ nonlocal resources when performing computations
is generically undecidable in operational settings. All in-
teractions with physically implemented computers are op-
erational; hence our results apply to all such interactions.
They show that the space and time complexity of physi-
cally implemented computational processes cannot be de-
termined unambiguously, and place principled limits on
the extent to which formal descriptions of computational
processes, e.g., formal descriptions of MIP* or CTC-using
machines, can be demonstrably realized in practice. They
also limit our ability to infer from observations and ex-
periments the computational architectures of computers
found “in the wild”, including living organisms.

As shown in [12,44], constraint systems (CS) and CSPs
can be formulated in the language of MIP and MIP* archi-
tectures, with the verifier C' implementing the satisfaction
condition. Specifically, ref. [12], sect. 4, and [44], Theo-
rem 1.1, demonstrate relations between CSPs, languages
in MIP* (and hence in RE), and protocols for the Halt-
ing problem of the form CS-MIP*(2,1,¢,s), with ¢ and s
being the completeness and soundness probabilities, re-
spectively; see [12], Corollary 4, for the special case where
¢ = 1. The results of the third section show that C' can-
not operationally demonstrate independence between con-
straints and identified partial solutions; this applies to
protocols of the form CS-MIP*(2,1,¢,s) as special cases.
In fact, the Halting problem has been shown [45] to be
equivalent to the Frame problem [46]: broadly speaking,
the problem of circumscribing whatever is relevant in a
given physical situation. What we have shown here is,
in essence, that empirically circumscribing resource avail-
ability and usage requires solving the Frame problem.

These results can be given a straightforward interpreta-
tion: finite interactions with an unknown quantum system
can place a lower limit, but not an upper limit, on the
Hilbert-space dimension of that system. This extends to
quantum systems the limitations on inferences from finite
observations proved for classical systems in 1956 [47]. The
existence of such limits illustrates the profound distinction
between behaviors that can be shown theoretically to be
logically possible and behaviors that can be unambigu-
ously observed by finite agents such as ourselves.

Data availability statement: No new data were created
or analysed in this study.
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