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Abstract

We argue that “processes v/s objects” is not a useful dichotomy. There is, instead, sub-
stantial theoretical utility in viewing “objects” and “processes” as complementary ways of
describing persistence through time, and hence the possibility of observation and manip-
ulation. This way of thinking highlights the role of memory as an essential resource for
observation, and makes it clear that “memory” and “time” are also mutually inter-defined,
complementary concepts. We formulate our approach in terms of the Free Energy Principle
(FEP) of Friston and colleagues and the fundamental idea from quantum theory that phys-
ical interactions can be represented by linear operators. Following Levin (Self-improvising
memory: A perspective on memories as agential, dynamically reinterpreting cognitive glue.
Entropy 26 (2024) 481), we emphasize that memory is, first and foremost, an interpreta-
tive function, from which the idea of memory as a record, at some level of accuracy, of
past events is derivative. We conclude that the distinction between objects and processes
is always contrived, and always misleading, and that science would be better served by
abandoning it entirely.
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Highlights

e An information-theoretic approach to biology renders “objects” and “processes” in-
terchangable at every scale.

e Morphogenesis is a process of memory construction at every scale.

e Life depends on lateral information flows between its component lineages at every
scale.

e Viewing living systems as multi-scale competency architectures forefronts communi-
cation via scale-appropriate interfaces, as opposed to manipulation of components, as
a strategy for both therapuetic intervention and bioengineering.

Thought is itself the thinker.
— William James [1] p. 401

1 Introduction

Is it advantageous to think of the world in terms of processes instead of objects, as suggested
by Whitehead [2] among others? Is it, in particular, advantageous to think of organisms
as processes instead of objects? Does doing so resolve, or avoid, the problem of identity
over time, or does it merely reformulate this problem? Does adopting a process view of
biology, for example, help us understand what it means to say that an individual human
is an individual, something that maintains a single identity from birth to death, despite
continuous change in properties at multiple levels? Does it help us to understand what it
means to say that Homo sapiens sapiens has remained the same subspecies for the past ca.
250,000 years? Does it help us decide whether a clonal colony of E. coli, or of a plate full
of adult planaria that are all regenerated from the fragments of a single planarian cut up
in a laboratory, comprise a single “individual organism” or many? And, reaching forward
towards empirical utility in fields like regenerative medicine and bioengineering, does it
facilitate interesting new discoveries, capabilities, and research programs?

The notations employed in much of mathematics suggest — though do not require — an
interpretation in terms of processes: writing ‘f(x)’, for example, suggests a process f
acting on an object z, while the notation ‘A — B’ suggests a process, indicated by ‘—’
that converts A into B, or perhaps moves something from A to B. The current foundational
language for mathematics is category theory. A (small) category comprises a set of O objects
and a set M of morphisms, or arrows, such that:



1. for every object o in O, there is a morphism Id, in M, the “identity morphism for o”,
such that Id, : 0 — 0, and

2. for all objects 01, 09,03 and morphisms mis : 07 — 0o and maz : 05 — 03, there is a
morphism mq3 : 01 — 03.

As Addmek, Herrlich and Strecker remark in their popular textbook [3], replacing every
object with one of its identity morphisms (they are not in general unique) allows any
category-theoretic statement to be made just in terms of morphisms. The Yoneda Lemma
and the notion of object-free categories formalize this fact. Hence mathematics, in a deep
sense, does not need objects. It just needs morphisms, some of which preserve an abstraction
called “identity” and others of which do not.

Similar moves are made ubiquitously in physics. Quantum theory replaces “properties”
of objects — position, momentum, spin, etc. — with operators that yield values of those
properties when deployed by an observer [4]. Quantum field theory replaces “particles”
with creation, destruction, and number operators acting on fields that permeate spacetime.
Feynman’s diagrams famously replace “particles” with sums of processes that yield equiv-
alent results when interrupted by observations. Even “quantum systems” can be replaced
with the operational procedures required to identify them [5]. An operational procedure is
a process that may or may not preserve the identity of either the system that it acts on or
the system — conventionally called an “observer” or “perceiver” — that implements it.

The idea that objects are constructed by perceivers is foundational in 2nd-order cybernetics
[6, 7]. This idea was introduced into evolutionary and developmental biology by Maturana
and Varela [8], where it became the notion of the joint “enaction” of an object by an
organism and its environment. It was introduced into perceptual psychology by Gibson
[9] as the idea that objects and their properties are “affordances” of an environment for a
specific, behaving organism. In all of these formulations, perceived “objects” are emergent
from the joint activity of a perceiver and its environment, not fundamental “furniture of
the world” as sought by traditional ontologists [10].

All of these process-oriented ways of thinking, however, employ object-like concepts in
their formulation. One can think of a morphism mis : 0 — 09 simply as an ordered pair
(01,09); the ordered-pair notation suggests an object, not a process. Quantum-theoretic
measurement operators must be deployed by observers to yield results [11]; observers are
themselves quantum systems, i.e. objects. When such systems are replaced by identification
criteria, these criteria must be implemented, again by a system — an object — acting as an
observer. Enaction requires two systems, or objects, an organism and its environment,
which interact in some well-defined way as discussed below. Affordances are for something,
an organism, hence an object, and are offered by something, the organism’s environment,
another object. Objects, in other words, seem to be required after all.

We will argue here that “processes v/s objects” is not a useful dichotomy in either physics
or the life sciences. There is, instead, substantial theoretical utility in viewing “objects”
and “processes” as complementary ways of describing persistence through time, and hence
the possibility of observation and manipulation. This way of thinking highlights the roles
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of memory as an essential resource for observation and of time as an essential resource
for action, and makes it clear that “memory” and “time” are also mutually inter-defined,
complementary concepts that both rest on the underlying notion of an “identity” that
persists. We formulate our approach in terms of the Free Energy Principle (FEP) of Friston
and colleagues [12, 13, 14, 15, 17, 18], noting the close relationship between the FEP and the
Holographic Principle (HP) of physics [19, 20, 21, 22] and that the fundamental idea of both
of these principles — that information passing through a surface can be represented as being
encoded on that surface — is implicit in the Divergence Theorem, one of the fundamental
theorems of vector calculus, first formulated in the early 19th century [23]. The FEP
characterizes all time-persistent physical systems as implementing a process, active inference
[24, 25], which is a combination of reacting to (learning from) and acting on (manipulating)
their environments. As a generic description of persistent physical systems as information-
processing systems, the FEP provides a uniform way of thinking about information and
memory across biological scales, from molecular networks in morphogenesis to evolutionary
dynamics.

Following a brief review of the FEP and its conceptual underpinnings in §2, we apply this
view of objects and processes as complementary to evolution and development in §3, asking
“what evolves?” and “what develops?” We show how thinking of evolution and development
as processes acting on processes enables a fully scale-free biology, i.e. a biology in which
processes at every scale can be described using a single set of concepts and methods. We
then consider the observer as a developmental system in §4, asking what is required for
an observer to model itself as a persistent system, and hence to model its observations as
a historical sequence. We re-examine in §5 the distinction between stigmergic memories —
particularly those encoded as permanent, public records, such as this paper — and implicit
or procedural memories such as those stored by machine learning (ML) systems, cellular
networks [26, 27], or biochemical pathways [28, 29]. Following Levin [30], we emphasize that
memory is, first and foremost, an interpretative function, from which the idea of memory
as a record, at some level of accuracy, of past events is derivative. We conclude in §6 that
the distinction between objects and processes is always contrived, and always misleading,
and that science would be better served by abandoning it entirely. We then look forward
to how doing so enables a bioscience of agentive materials that integrates biomedicine with
bioengineering, a bioscience that is difficult to conceptualize from the traditional viewpoint
that considers organisms — with the possible exception of humans — as biological machines
implementing programs that are largely, if not completely, fixed by their genomes.

2 Systems, distinguishability, and persistence

The FEP is a mathematical framework for talking about persistence through time; indeed,
the FEP can be stated, in obviously tautological form, as the claim that any system that
persists through time must behave in a way that allows its persistence through time [14].
From a formal perspective, the FEP is an interpretation of dynamical systems that can be
decomposed into components that maintain conditionally statistically independent states
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over some period of time. Note that the FEP characterizes a system only while it persists —
maintains a state that is conditionally statistically independent from that of its environment
— through time, and says nothing about how long any system will be successful in behaving
in a way that allows its continued persistence. Understanding the FEP as a statement
of principle requires understanding what “persistence”, “time”, and “behavior” are. The
formal theory of the FEP is, effectively, an answer to these three questions. This formal
theory has evolved significantly since it was first proposed; see [14, 17, 18] for current
statements of the theory using classical statistical physics, [15] for a restatement in the
language of quantum information theory, and [16] for a detailed comparison of the classical
and quantum formulations. We will not replicate these formal presentations here, but will
rather examine, in reverse order, how the theory addresses the fundamental questions of
persistence, time, and behavior.

2.1 Behavior and time in the FEP

First, what is behavior? The FEP follows physics in general in identifying behavior with
physical interaction, and then follows statistical physics — equivalently, information theory,
cybernetics, or even computer science — in identifying physical interaction with information
exchange. The “space” in which this behavior takes place is the joint state space of the
system of interest S and its environment £, i.e. the state space of U in Fig. 1. The roots of
the identification of behavior with information exchange again go back to the 19th century,
to Clausius’ original definition of entropy, AS = AE/T, where S is entropy, E is energy,
and T is temperature, and Boltzmann’s interpretation of entropy in terms of uncertainty,
S = kgln(), where kp is Boltzmann’s constant and {2 is the number of observationally
indistinguishable states of the system of interest. Combining these two in the case of a
binary system (2 = 2) yields AE = In2kgT', which is Landauer’s Principle [31, 32}, now
recognized as the fundamental connection between energy and information [33, 34].

Physical interactions can be of two types: interactions within a system (internal or “self”
interactions) and interactions between systems. In order to describe these interactions, we
make a fundamental assumption: that “standard” or “textbook” quantum theory, with
the Dirac-von Neumann axioms as given in, e.g. [35], is correct. With this assumption,
the state spaces of physical systems can be represented as Hilbert spaces, which for conve-
nience we take to be finite dimensional, and interactions between physical systems can be
represented as (again finite dimensional) linear operators, specifically Hamiltonians or total
energy operators, operating on Hilbert spaces. This assumption rules out, in particular,
any nonlinear interactions between quantum systems, and hence any objective, observer-
independent “collapse of the wavefunction.” While such nonlinear interactions have never
been observed, they have not yet been conclusively ruled out by experiments [36, 37].

Given the assumption that standard quantum theory is correct, we can write the total
energy of any isolated system U as an operator, the Hamiltonian Hy = Hg + Hg + Hsg,
where Hyy, Hg, and Hg are the internal interactions of U, S, and E respectively and Hgg
is the interaction between S and E. Figure 1 illustrates this equation. The distinction



between interactions within or between systems is, therefore, dependent on, and relative to,
a decomposition of whole systems such as U into components such as S and E. Decomposing
U in a different way, e.g. as U = AB with A # S, would define different interactions:
Hy = Hy+ Hg + Hyp. This dependence of the distinction between self-interactions and
other-interactions — interactions between systems — on the decomposition of U tells us that
the distinction cannot be fundamental. Nothing about the physics of U favors any one
decomposition — any one placement of an inter-component boundary — over any other.

Figure 1: Decomposing a system U into components S and E decomposes the self-
interaction Hy of U into the sum Hy = Hs + Hg + Hgg. In the weak interaction limit,
in which the dimension dim(Hgg) < dim(Hg),dim(Hg), the systems S and E will have
“internal” states not directly involved in the interaction, as required for systems compliant
with the FEP. In this case, the interaction Hgr can be represented as defined at a notional
boundary £ separating S from E. This boundary £ is not a component of the joint state
space Hy, but is rather an ancillary construct that provides a convenient representation for
the interaction, as described in [22].

Assuming standard quantum theory also provides a strict criterion for determining whether
the components S and F specified by a decomposition of a system U have independently-
specifiable, and hence conditionally statistically independent states, as is required if the
FEP is to apply. The components S and E have independently-specifiable states if and
only if their joint state factors, i.e. if and only if |[SE) = |S)|E) in Dirac’s notation.
If the joint state does not factor, it is, by definition, entangled. Interactions between
physical systems generically induce entanglement; an assumption that two systems are
unentangled is, therefore, an assumption that they interact only weakly, and that even
this weak interaction has not been observed for an asymptotically long time. Determining
experimentally whether two systems are entangled is very difficult; the 2022 Nobel Prize



in Physics was awarded to Aspect, Clauser, and Zeilinger for showing how this could be
done. In practical settings, therefore, interacting systems that appear to be mutually
distinguishable are assumed to be unentangled, i.e. assumed to have joint states that
factor. The FEP applies only to systems that can each be assumed to have its own,
independently-specifiable, conditionally statistically independent internal states. We will
refer to systems as “distinct” or “distinguishable” if they can, in practice, be assumed to
satisfy this condition.

The above discussion refers to the “system” U and its components, the distinct “systems”
S and E. A system is naturally thought of as an object: a collection of “degrees of
freedom” each of which can be in some state or other. As seen in Fig. 1, however, each
system is also characterized by its self-interaction. This self-interaction is a process; in
the quantum formalism, the propagator Py (t) = exp((—:/h)Hy(t)), where h is the reduced
Planck’s constant, is the unitary operator that evolves the state of U forward in an assumed
“background” [38] time ¢t. Each degree of freedom z of U can, moreover, be replaced with
a collection of binary degrees of freedom, one for each of the discernable values of z. We
can, therefore, think of U simply as a collection of physically-implemented bits, or in the
quantum case, qubits. We can, in other words, think of any state of U as an encoding of
data, and think of the action of Py on any such state as a computation on those data;
as shown in [39], doing so only requires finding a mapping — a semantic interpretation —
from states of U to some data structure, and from finite samples of the action of Py to the
action of some function on that data structure. Many such mappings are, moreover, always
possible [40]. Provided that their joint state remains separable, the same goes for S and F.

If Hy, Hg, and Hg can be interpreted as implementing computations, how are we to in-
terpret the interaction Hgg? Let us suppose that information in some measurable form
is carried by discrete, detectable physical systems, such as individual photons, with each
photon encoding one bit of information. The Divergence Theorem tells us that the number
of photons, and hence the amount, in bits, of information emitted by any source within a
system can be computed by computing the number of photons crossing any closed bound-
ary around the system. The HP extends this result, postulating that the only information
that can be obtained about a system by an external observer is the information that is car-
ried across its boundary by physical systems capable of traversing the boundary. It states,
moreover, that for any finite system, the maximal number of physical information carriers
— again, e.g. photons — that can traverse its boundary is finite, and indeed proportional to
the area of the boundary (formally, the maximum classical entropy S(#) of the boundary
P is Ay/4, where Ay is the area of Z in Planck units). The boundary % separating S
from E can, therefore, also be thought of as a collection of discrete, physically-implemented
bits, or in the quantum case, physically-implemented qubits (see [16] or [22] for mathemat-
ical details and [41] for a less formal discussion). The interaction Hgp can, therefore, be
regarded as finite bit exchange between S and FE| i.e. as communication between S and F.

With this understanding of behavior, we are in a position to address time, the background
time ¢ employed above to construct the propagator Py (t). The FEP is about persistence
through time, but where does “time” come from, and what role is it playing in the theory?



To answer this question, it is useful to ask another: what happens to the information
that flows, via the action of Py(t), into S from E? If Hg is viewed as implementing
a computation, the answer is clear: information from F is transferred across %, after
which it serves as an input to whatever computation Hg implements. In FEP language,
information arriving across £ is “sensation.” Information flow from S back to F is output
from Hg — “action” in FEP language. Sending E a bit string involves writing these bits
on %; this takes energy, at least In2kgT per bit. It also takes time: formally, action is
the product, AEAt, of energy and time. Hence formally, time is built into the concept of
interaction: it is what separates input from output. Any system S able to distinguish or
record successive inputs from, or outputs to, another system E must implement, as one
function of its internal interaction Hg, a time counter or clock that “ticks” between each
input and the following output, and thus provides an available timestamp for recording
inputs or outputs [15]. The internal time tg counted by S is discrete, as it counts particular
events, and is by definition coarse-grained with respect to the background time t. This
internal time is strictly system-relative, as stressed by Di Biagio, Dona and Rovelli [42]
among others.

Let us now describe S in the language of the FEP, considering S to both observe and
manipulate E by reading from and writing on &; this alternation between reading and
writing is implemented by Hg and is, in FEP language, the process of active inference.
Observation can be informative only if most of what is observed is not changing (or changing
only slowly) in the internal time tg; if everything is observed to be changing, all that is
“seen” is noise. Manipulation similarly makes sense only if there is something to manipulate,
and an effectively fixed background against which to manipulate it. Formally, these are
conditions of “sparse coupling” or “weak interaction” required by the FEP [16]. Processes
in F that act on 4, in other words, can be observed and manipulated only against a
background of stasis. Time enables stasis: time provides a redundancy resource for — a
“place to put” — the multiple “copies” of the observed background that enable it to be
seen as unchanging, and hence allow other things to be seen as changing. Time is not just
Nature’s way of assuring that everything does not happen at once [43]; it is also Nature’s
way of allowing what happens to be noticed by observers.

Time has, therefore, two roles in the FEP: it is something that agents count by acting, and it
is a resource made available to observers by their weak interactions with their environments.
We can view these two roles at the level of fundamental physics, where weak interaction
is required for distinctness from — absence of entanglement with — the environment as
noted above. Hence weak interaction is required for Hg to be locally well-defined, i.e.
defined on S alone, which is in turn required for Hg to implement an S-specific clock with
which to count time relative to S. We can also view these roles at the level of problem
solving, where distinctness from the environment is required for active inference, and active
inference requires a distinction between input and output — sensation and action — that
is provided by counting time. Active inference agents can manipulate their coupling to
their environments by coarse-graining their inputs, or by employing selective attention —
manipulating Bayesian precision — to ignore some inputs altogether. Change blindness



[44], from this perspective, is not a cognitive deficit, but rather a way of maintaining the
fixed background that renders attended-to changes salient. Maintaining a conversation
in a crowded, noisy room, for example, would be impossible without the ability to not
notice — be blind to — other conversations in the background. Manipulating coupling to
the environment can be achieved by manipulating (agent-relative) time — processing fewer
inputs — in order to minimize the energy expended to keep track of what is happening.
Agents accomplish this by using specific reference frames to selectively observe and act on
their environments.

2.2 Examples: Detecting changes in signals and objects

Let us first consider the detection of a signal in some medium. Analog radios that employ
either amplitude modulation (AM) or frequency modulation (FM) provide a particularly
clean example, and one with historical importance for theories of perception. Analog radio
transmitters encode signals in the ambient photon field, the same medium that encodes
visually-accessible information. We access these signals with appropriate detectors, i.e.
analog radios.

Suppose now that you are listening to a song on the radio. How does the joint system
comprising you and your radio extract the information of interest — the song — from the
ambient photon field? Extracting the song is a two-step process that mirrors the two-step
process of encoding it. Your radio is a tunable resonator that detects the “carrier wave”
(CW) of the transmitter. This CW is a constant signal at some designated frequency. It
encodes, effectively, the name of the transmitter. Once the radio has found this signal, it
amplifies small, very slow (10s of Hz to kHz as opposed to GHz) AM or FM perturbations
of the CW, using filters and feedback (i.e. measures of the differences between current and
expected states) to reduce noise. It is these small, slow perturbations that encode the song.

The ability of radios to extract songs from the ambient photon field is of interest historically
because Gibson [45] used it as a model of visual perception, and used it in particular to
argue that perception by “resonance” required no memory for prior information on the part
of the perceiver. This argument has since been used extensively to argue that organisms
neither store nor process information [46, 47]. The brief description above highlights the
stored information that this argument misses: radios store information about CWs that,
for example, rocks of similar size and weight do not, and also store extensive information
about how CWs are modulated by radio transmitters. This latter information allows them
to process perturbations of the CW of the right kind, and at the right timescale, to extract
the encoded information, e.g. a song.

A human using a radio to find songs is faced with the same problem facing the radio, and
solves this problem is a similar way. In order to use the radio to find songs, a human must
first find the radio. This is usually done by interacting with the ambient photon field, i.e.
by visual perception. The human must scan the available components of this field to locate
an expected, constant signal, what we ordinarily call the “visual appearance” of the radio.



It is only after doing this that the human can detect or manipulate time-varying properties
of the radio, such as the station (i.e. CW) to which it is tuned. Figure 2 illustrates this
difference between constant (or “reference”) and variable (or “pointer) properties. The
specificity of the reference state |R) (using Dirac’s notation) used to identify a system —
a radio, or even a CW in the radio-frequency spectrum — determines the specificity with
which a particular system can be detected. If one wants a specific radio station, or a specific
radio, one needs to detect an |R) specific to, and known to be specific to, that individual
system and no other.

System S

A B
A B <
O
Reference R Pointer P
|R> time invariant |P> time varying

Figure 2: Observing the state of any system requires first identifying a time-invariant
“reference” component |R) of its current state, and then, having distinguished the object
from its perceptible background, measuring any time-varying “pointer” components |P) of
its state that are of interest. From [48], CC-BY license.

The above characterization of detecting changes in signals and objects is completely general,
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and in fact characterizes any physical system capable of responding in some specific way to
some specific property of its environment [5]. In the language of physics, detectors of specific
kinds of signals or systems are quantum (because physically implemented) reference frames
(QRF's [49, 50]). A rhodopsin molecule responsive to photons in a specific frequency range,
for example, is, in virtue of its physical implementation, a QRF for any signals carried by
photons in that frequency range. Such molecules are not isolated or passive, but rather exist
within larger systems on which they depend for biochemical stability, and on which they act
when excited by photons. In the language of the FEP, QRFs are components of a system’s
generative model that specify what kinds of signals or objects are present in its environment,
what kinds of variation they are capable of, what kinds of actions can be taken with respect
to them, and what the anticipated consequences of such actions are [15, 16]. Implementing
a QRF confers observational and action capabilities on a system; hence characterizing a
system in terms of its implemented QRFs is a functional, not structural, characterization.
Any such characterization is, moreover, a hypothetical model; how a system implements its
QRFs, and even which QRFs it implements, cannot be determined by finite observations
[51]; see [52] for a review in more contemporary language.

As an organism develops, we can expect what it can detect, and what it does with the
information it obtains, to change. Hence we can expect the QRFs it implements to change.
Such changes may be gradual, for example as a child increases her native-language vocab-
ulary, or radical, for example when metamorphosis constructs an entirely new body, with
new sensors and effectors, for an insect. Such changes naturally raise questions about the
identity of the system undergoing change, and whether this identity itself is changing over
time.

2.3 What is persistence?

We can now ask what it means to say that an object S, or its internal self-interaction
Hyg, persists through time. Friston [14] introduces this topic with: “we start by asking how
something can be distinguished from everything else.” We adopt this tactic here, starting by
considering persistence relative to some specified observer. We then show why persistence
can only be defined in this observer-relative way:.

The examples above highlight what is required to distinguish something from everything
else: a QRF of sufficient specificity. The vertebrate visual system, for example, distin-
guishes “objects” — with no further characterization — by their motion with respect to an
unmoving (or more slowly moving) background [53]. This motion, or visual trajectory,
detection process is highly sensitive to gaps in observation, and infers object persistence
only following very specific kinds of occlusion, and only for timeframes of seconds. It is
implemented in mammals primarily by the dorsal visual stream, and relies on spatial and
temporal coordinates implemented in medial-temporal areas [54]; these networks together
can be considered the mammalian short-term motion QRF. Longer gaps between observa-
tion require additional inferences about object properties and history, and involve not only
the ventral visual stream and hippocampus, but also more frontal areas. What is inferred
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in these cases is a hypothetical process: a causal chain that preserves object identity [55].
Multiple spatial, temporal, and contextual points of reference are required to, for example,
re-identify an old friend not seen for decades; hence in these cases, much of the brain is
functioning as an object-recognition QRF.

Persistence is thus a combination of observed distinctions — “detector clicks” from a QRF
— and a hypothetical process. The process, as mentioned above, is what happens between
observations. We cannot talk about objects as persistent without the processes that extend
them through time, and we cannot talk about processes, except as pure abstractions, with-
out talking about observations that interrupt them with “snapshots” that produce some
particular observational outcomes. We cannot, in particular, talk about time without some
means of experiencing it — some reference points that distinguish “now” from “then”. Hence
we cannot talk about persistence with talking about memory. And as [30] makes clear, we
cannot talk about memory without talking about coarse-graining, interpretation, and the
drive to make sense of things [56]. The FEP has, in other words, taken us from physics
back to psychology: by formulating a criterion for persistence, it has formulated an implicit
definition of sense-making.

Einstein famously asked whether the moon was there when no one looked at it [57], a
question that quantum theory has answered, as Berkeley answered a similar question posed
by Hume, by asking what “no one” means. Let us return to Fig. 1, and ask whether S
can tell whether E persists through time. This is, of course, also the question of whether S
can tell whether it itself persists through time, or equivalently, whether S can tell whether
the boundary % maintains its integrity through time. Since S being separate from FE is
a matter of mutual conditional independence, or in quantum-theoretic terms, absence of
entanglement, we can formulate this question as whether S can tell whether it is itself
conditionally independent of F, or in quantum terms, whether it is entangled with £.

The answer to this question is a categorical “no” [52]. No system can determine whether
it is entangled with its environment. No system can determine, in other words, whether
it has an effective boundary. The reason is simple, and follows immediately from the HP,
or in FEP terms, from the definition of a Markov blanket [58]: systems interact with their
environments via their boundaries, and cannot “reach outside their boundaries” to more
directly measure or manipulate their environments. In particular, they cannot measure
the entanglement entropies across their boundaries, so they cannot determine whether they
are separable from, and hence conditionally independent of, their environments. This is
independent of how the boundary is defined, leading immediately to the consequence that a
system can neither determine nor specify “where its boundary is” or even measure the size
(i.e. Hilbert-space dimension) of its boundary (again see [52] for formal proofs). This gives
the “extended mind hypothesis” [59] — a notion usually thought as involving cognitive aids,
analogous to the extended body schema induced by tool use [60] — considerable teeth: no
system can demonstrate that any perceived object is outside of its boundary, so no system
can demonstrate that any perceived object is not part of its mind. Experiments in which
cultured cells interact with non-biological materials — i.e. with “hybrots” — demonstrate
effects analogous to body-schema extension outside of humans or even evolved organisms,
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suggesting that “extended minds” may be ubiquitous [61]. We can also access this result
from a fully external, abstract perspective. Whether two systems are entangled — whether
their joint state space factors — is not an observer-independent fact, but rather depends
on how their joint state space is described [62, 63]. Hence there is no such thing as an
observer-independent boundary.

2.4 Persistence involves risk and requires tradeoffs

Mathematical models such as the FEP show their greatest value as thinking tools in situ-
ations in which decisive experiments are impossible but circumstantial evidence and intu-
itions are strong. The FEP describes agents as minimizing a variational free energy (VFE)
that is, effectively, a measure of prediction error. They do this by active inference, a com-
bination of learning environmental regularities and acting on the environment — in ways
ranging from moving around to doing experiments — in order to obtain both thermodynamic
resources and new information. The latter activity is essential for any systems not living
in an unrealistically ideal environment [64] and its motivation — whether termed epistemic
hunger, infotaxis, or curiosity — is a fundamental drive [65]. Whether for food or knowl-
edge, foraging involves risk; indeed [14] shows how risk and (predicted) information gain
are just two ways of describing the same statistical measure. Hence active inference is in-
trinsically risky, and systems that engage in it can suffer irreversible damage or destruction,
i.e. boundary collapse [66].

As discussed above, to persist as an entity is to maintain statistical separability from one’s
environment by maintaining a collection of internal states that are causally “far from one’s
boundary” and hence available for implementing computations under one’s own control.
How many such states there are depends on the size of one’s boundary — effectively, on
one’s surface to volume ratio. The size of the boundary, in turn, depends via the HP
on the strength of the system-environment interaction. Hence persistent systems must
maintain small boundaries to avoid being penetrated or incinerated by their environments.
Boundary size, however, also determines both the amount of information and the amount
of thermodynamic resources that can be obtained from the environment [67, 68]. Both
are needed, and they trade off against each other when boundary size is fixed. Hence all
active inference agents face coupled tradeoffs related to boundary size or, equivalently, total
strength of interaction with their environments [41]. For any active inference agent, different
choices of environmental exposure and different tradeoffs between feeding, learning, and
exploration can be expected to yield different lifestyles, and hence pre-adaption to different
niches.
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3 What evolves? What develops?

3.1 Life as a process of boundary expansion

The NeoDarwinian idea that only genes evolve, while all other aspects of biology are just
along for the ride [69, 70, 71, 72], has been widely criticized, and to some extent supplanted,
by theoretical approaches that countenance multi-scale evolution [73, 74, 75, 76]. Even in
a single cell, far more heritable information is encoded by the cytoplasm, cytoskeleton,
and membrane than by the genome; models that focus exclusively on genes miss the in-
heritance of this information altogether [77]. The idea that both organismal variation and
the environmental variation that drive selection are random, and hence essentially ther-
mal processes has also been challenged by models of organisms as active inference agents
that modify their environments, and thereby modify the selective landscapes faced by both
themselves and others [78, 79, 80, 81, 82]; see [83, 84, 85| for discussions of this point from
a more philosophical perspective.

These and other, similar considerations motivated our previous proposal that the processes
we distinguish by the terms “evolutionary” and “developmental” are manifestations of a sin-
gle mechanism that differ only in spatial and temporal scale [86]. This perspective suggests,
in turn, that Life as we know it, the lineage of the Last Universal Common Ancestor (LUCA)
of extant organisms, can be viewed as a single, temporally-extended, morphogenetic process
[87]. Life as we currently observe it, in other words, has a spatially-extended, multicellular
body, all of the cells of which bear the same lineal relationship to LUCA that cells in a
conventional multicellular body — setting aside commensal bacteria and other organisms
— bear to a zygote. With the recognition that all living multicellular organisms are holo-
bionts [88, 89, 90], it indeed becomes clear that conventional multicellulars are composites
of multiple lineages from LUCA.

Adopting the notation of Fig. 1, we can represent the developmental process of Life very
simply: as shown in Fig. 3a, Life starts out as a small system with very few degrees
of freedom and hence a very small share of the total state space of U. Most degrees
of freedom, and hence most of the state space, compose the abiotic environment with
which Life interacts. As Life develops, however, its identity as a system — a collection
of degrees of freedom — changes. As the “background” time ¢ becomes larger, degrees of
freedom that were formally part of the abiotic environment, e.g. available water, carbon,
nitrogen, and other molecules, become part of Life, which employs them to synthesize new
macromolecules. This process makes Life a larger system, with both a larger share of the
state space and a larger boundary. The larger state space enables more complex information
processing, while the larger boundary affords more thermodynamic resources, more useful
information, and more possibilities for action. The morphogenetic process of Life, from
this perspective, can be described as the elaboration of a complex computational process,
implemented by a time (¢) dependent self-interaction Hip,f., at the expense of its abiotic
environment. This expansion of Life as a system is a phenomenon that the overall self-
interaction Hy implements as it drives the overall state |U) around in its very large state
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space.

This view of Life as a process of state-space and boundary expansion is purely topological,
and neglects the geometric process of cell division that produces the branching pattern of
lineages that we observe, as in Fig. 3b, as phylogenetic diversity. This branching pro-
cess renders the boundary between Life and its environment geometrically complex, with
different components of Life accessing thermodynamic resources and information from,
and acting on, different components of the abiotic environment as well as on each other.
Representing Life as an abstract system S, we can describe this geometric complexity in
computational terms by viewing S as deploying a set of QRFs Si,9,....5, that access
mutually disjoint “slices” of the state space Hy of the boundary % as shown in Fig. 3c;
see [91] for details. We observe this kind of boundary segmentation at all scales, from the
asymmetric placement of membrane receptors and effectors that makes chemotaxis possible
to the independently mobile, exploratory pseudopodia of amoeboid cells to the branching
patterns of neurons, higher plants, and animal appendages. Indeed, we showed in [91] that
such “neuromorphic” branching patterns are induced in any active inference agent that has
a boundary with spatial degrees of freedom. From an FEP perspective, they increase both
predictive power and the effectiveness of actions by distributing computational engagement
with the boundary evenly across its surface.
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Figure 3: Life as boundary expansion. a) Life begins with only a few degrees of freedom,
and hence a small share of the overall state space and a small boundary. As Life develops,
it incorporates degrees of freedom from the abiotic environment, expanding both its state
space and its boundary. b) Viewing Life as a lineage from LUCA reveals phylogenetic
branching not visible in the purely topological representation of panel a). From [87]; used
with permission. ¢) Any system S with spatial degrees of freedom will be driven by the
FEP to probe its boundary in distinct “slices” that yield different information and afford
different kinds of actions. From [91]; used with permission.

3.2 Life as a multiscale competency architecture

Maturana and Varela [8], Polanyi [92], Rosen [93], Noble [94], and many others have noted
the bidirectional flows of both constraints and their complements, enabling conditions,
that characterize biological systems. Organic chemistry, for example, both constrains and
enables macromolecular biochemistry, while macromolecular biochemistry enormously ex-
pands, within the constraints imposed by enzymatic structures and activities, the diversity
and hence the reaction possibility space of organic chemistry. Animal bodies similarly en-
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able and constrain the built environments that animals can construct, while these environ-
ments both enable and constrain the behaviors of both their builders and other organisms
occupying overlapping niches. Both the upward and downward flows of constraints and
enabling conditions and the absence of local determinism by either higher or lower levels
can be expressed by characterizing living systems at any scale as “agential materials” that
both act on and are influenced by the behavior of systems at larger and smaller scales but
retain their own autonomy. Multiscale systems comprising agential materials at every scale
implement multiscale competency architectures (MCAs), i.e. structural and functional or-
ganizations in which, at every scale, components are competent to go about their business
with guidance, but not explicit instructions, from other scales [27, 61, 95]. The idea that
components of MCAs are autonomous — free from local determinism, even by all events in
their causally-relevant pasts taken together — rests on a fundamental theorem of physics
showing that such autonomy is required for consistency with both special relativity and
quantum theory [96].

Viewed as a computational architecture, an MCA is a hierarchy of active-inference agents,
each complying with the FEP with respect to its own environment. Computation, however,
is a process. Viewed in the notation of Fig. 1, an MCA is a decomposition of the internal
interaction Hg of the system S implementing the MCA. In particular, we can write:

Hs =Y (H;+) Hy), (1)
i i

where the H; are component self-interactions and the H;; are interactions between com-
ponents. Equation (1) follows from our assumption of standard quantum theory, which
requires all operators representing observables, including Hg as a representation of total
energy of S, to be linear. The only constraints on this linear decomposition of Hg into
components labeled by ¢ and j are that the H; and the H;; are all well-defined, which in
turn requires that the states |i) of the components are all well-defined. Any number and size
of components can be chosen provided that these constraints are satisfied. As described
in connection with Fig. 1, systems and their internal dynamics defined within standard
quantum theory do not impose any mereological descriptions a priori; all such descriptions
are model-dependent, and hence dependent on how the system and its behavior are mea-
sured [62, 63]. No particular decomposition of any system into “parts” can be assumed to
be given, a priori, by the “physics” of the system. Hence no description of a system as an
MCA can be assumed to be given, or implied, by its physical dynamics.

We can, therefore, describe any MCA in multiple ways, and ask how these descriptions
relate [40]. Let .#, and .#5 be descriptions of S as an MCA. The descriptions .#; and
M can be stated in any language(s), formal or informal, and can divide S into “parts”
and characterize the states of the parts at any scale and in any way. To “make sense”
or be coherent as models of the behavior of S, each of .#; and .#, must, individually,
satisfy the simple criterion given by [39]: the map from states |S(¢)) to their descriptions in
the model must commute with both the physical dynamics Hg and the postulated model
dynamics. Describing some state |S;,) in the model and then running, or inferring, the
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model dynamics on the model’s description of |S;,) for a simulated time dt must, in other
words, yield the same result as describing the state |S;, 1 4) in the model. How precise the
criterion of “sameness” is depends on the scale, precision, and typically, level of formality
of the model. If the model is stated in a programming language, the notion of “the same
result” means: as computed using an implementation of that language. If the model is
stated in ordinary English, e.g. with diagrams such as typically used in biochemistry, what
“the same result” means may be considerably more vague.

Assuming that .#, and .#, are each individually coherent models of the behavior of S, we
can ask what is required for them to be mutually coherent, or inter-translatable. Suppose
that the descriptions .#(t) and .#5(t) of |S(t)) can be related by some translation 7 (t).
If 4 and .#5 are formal models, this .7 will be a mapping from the symbols used by
M to the symbols used by #,. If .#, and .#5 are informal models, .7 may just be
an explanation, in some natural language, of how the models relate; nearly all models of
genetic interactions, cellular biochemistry, or organismal physiology or behavior are of this
informal kind. We can now ask: does the same translation between the descriptions of S
given by .#, and .#5 work at subsequent times, e.g. for the descriptions .#(t + dt) and
Mot + dt) of |S(t + dt)) , as illustrated in Fig. 47 If so, the translation 7 “works” or
“makes sense,” at least for the limited collection of descriptions generated by observations
of S between t and t + dt. If .7 works for descriptions of large numbers of systems, over
long observation times, that are generated in the languages of .#; and .#5, we can say, at
least tentatively, that .7 is a coherent translation between these two languages.
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I(t+dt)

Figure 4: Mutual coherency condition for MCA models of a system S. Provided that both
Ay and A5 are coherent models of S [39], and that the map .7 between models remains
constant over time, the diagram commutes and mutual coherence between the models .#;
and .5 is guaranteed.

The assumption of linearity that allows us to write Eq. (1) provides an alternative approach
to checking whether two models of a system S are mutually coherent. Suppose that .#
describes S in terms of a mereological decomposition into subsystems S;, while .#5 describes
S in terms of a mereological decomposition into subsystems Sj. If the two models can each
fully reconstruct a representation of Hg, i.e. if each model can fully describe both the
self-interactions, Hg, and Hg, respectively, and the pairwise interactions, Hg,, and Hg,
respectively, of the subsystems that they postulate, then the translation .7 : .4, — 5
between the two models is just a change in decomposition, a redrawing of component
boundaries within S that, by satisfying Eq. (1), leaves the dynamics Hg and hence the
state transition |S(t)) — |S(t + dt)) unchanged. The map 7 (t) — 7 (t + dt) is, in this
case, the Identity, which guarantees that the diagram shown in Fig. 4 commutes, i.e. that
the models .#, and .#, are mutually coherent as MCA models of S.

It is important to emphasize that the coherence of models of physical systems is an empirical
question, and that whether any model of any system S is coherent, or accurate, in the above
sense cannot be proven a priori. The Conway-Kochen theorem [96], which rules out local
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determinism for any physical system if quantum theory is true, guarantees that even models
that are highly accurate for ensembles cannot precisely predict outcomes of experiments on
individual systems. In biological systems, where even clonal populations cannot be expected
to be uniform in all characteristics potentially relevant to their dynamics or interactions,
determining the accuracy of the decompositions of Hg proposed by competing models is
correspondingly more difficult.

If two models .#, and .#, are decompositions of S into active inference agents, and of
Hg into interactions between such agents, at two different scales — that is, if.#; and .,
are both MCA models — then .7 describes how the active inference agents defined at the
smaller scale embed into, or collectively implement, the active inference agents defined at
the larger scale. The theory 7 tells us, therefore, how the larger-scale components and their
interactions “emerge” from the smaller-scale components and their interactions. Because
 1is, in this case, a mapping between the labels assigned to degrees of freedom of S by
A and A respectively, this “emergence” process is also just a change in labeling. What
S does — the dynamics Hg — does not change, the only change between small- and large-
scale models is in how Hg is being described. As relabeling the components of S has no
effect on E, the interaction Hgp also remains unchanged. What appears as new in the
larger-scale description are the interactions H;; between larger-scale components ¢ and j,
which in general cannot be predicted from any smaller-scale description of Hg and may be
completely unexpected. Any larger scale component k£ that is bounded in part by some
sector of # — i.e. that is “next to” the boundary # and hence directly interacts with F
— will exhibit a local interaction Hyg that is similarly unpredictable, in general, from any
smaller-scale description. Changing the modeling scale does not, therefore, generate any
new physics — any change in either Hg or Hgr — but it does generate new knowledge and
new possibilities for intervention and control [97].

This notion of “emergence” as a consequence of a change in decomposition is consistent
with the idea of “weak emergence” defined by Bedau [100]. A large-scale behavior of a
system S is weakly emergent if it cannot be predicted from a smaller-scale description, but
can be observed when the smaller-scale dynamics are simulated. Implicit in this definition,
clearly, is that the simulation results are computed at the larger scale. As Bedau points
out, S can have weakly-emergent behaviors only if it is not isolated, a condition that any
system that interacts with an environment, and ipso facto any system that is observable,
satisfies. Emergence being a consequence of decompositional change is, moreover, also con-
sistent with ideas of “strong emergence” [101] that understand strong emergence in terms
of symmetry breaking [102]. Inserting new decompositional boundaries into a system does
not break a physical symmetry, but it does break a descriptive symmetry by introducing the
new interactions H;; and Hyp. Introducing new boundaries is adding new information to
the description of the system, and this new information is manifested in the unpredictability
of these new interactions from smaller-scale descriptions. Hence the claim that these inter-
actions are “not determined by the underlying physical laws” [102], p. 6 is clearly correct;
these interactions can only be predicted given the smaller-scale physics and the larger-scale
boundaries. This is because the larger-scale boundaries are themselves not determined by
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the underlying physical laws. Mereology is imposed by observers, not generated by physics,
as shown explicitly by Zanardi [62] and by many others subsequently.

From a practical point of view, Eq. (1) and the commutativity of Fig. 4 allow descrip-
tions of S at multiple scales to serve as an error-correction mechanism for theorists: since
all models must yield the same overall dynamics Hg, modeling errors at one scale can be
detected by examining models at other scales. The utility of requiring consistency between
scales — i.e. between “levels” in a virtual-machine hierarchy — for debugging computer soft-
ware is obvious. In a setting more relevant to the biosciences, Friston [14] has shown that
all random dynamical systems that exhibit sparse enough coupling to be decomposable into
conditionally-independent components are renormalizable. In such systems, scale transi-
tions can be represented by actions of the Renormalization Group on the generative models
that the components can be described as implementing [103]. Precise mappings between
algorithmically-specified models, e.g. dynamical systems or generative models specified
using the FEP, and “hardware-level” descriptions of the physical implementation of such
models in particular systems at particular scales are needed to apply such multi-scale rep-
resentations in practice. The availability of such model-to-hardware maps can be expected
to improve as new measurement techniques and formal languages are developed.

3.3 Life as a multiscale memory

Machine learning has revolutionized artificial intelligence because training an artificial neu-
ral network on a large set of examples effectively constructs an implicit statistical model of
what those examples have in common. Running such a network “backwards” generates new
instances of these commonalities, as the behavior of generative systems such as ChatGPT
or Midjourney demonstrates. All that is needed to trigger the generation of a new instance
is an input from the environment, a “prompt” of some specified type.

Active inference agents are generative systems in precisely this sense: any agent S encodes
a statistical model of its environment E’s observed behaviors, including E’s responses to
S’s previous prompts. Active inference agents are, therefore, systems capable of memory,
i.e. systems in which at least some state changes induced by external perturbations —
actions by the environment - persist long enough to affect at least some future behavior
[104]. Inputs from E also prompt S to take some action, even if it is a “non-action” such
as waiting for more input. As discussed above, this model is implemented by Hg, which
can be decomposed at multiple scales to yield multiple, distinct descriptions of S as an
information-processing system.

We can now apply these ideas to Life as an evolving/developing system. We can describe
Life as a single system with an internal interaction Hp;r. that interacts with its abiotic
environment with some interaction Hp;fe pno. Alternatively, we can decompose Life into
a collection of lineages of various lengths and at various scales. A lineage is a sequence
of cell divisions, with some branches being effectively immortal and others ending in cell
death; if the cells in a lineage interact mostly with each other, we can also describe the
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lineage at the scale of multicellular organisms that reproduce in some fashion and sometimes
die. We can distinguish, at this organismal scale, between lineages of organisms that are
effectively immortal and lineages of organisms that die at the end of some finite, individually
variable but statistically definable lifespan, noting that the latter correspond exactly to the
organisms with obligate sexual reproduction [105]. For any given lineage L, we can write
an internal interaction H; and an interaction with L’s environment Hp, gy, noting that
E(L) contains many lineages of Life that are disjoint from L. When these inter-lineage
interactions occur inside an individual multicellular body, e.g. between neurons and non-
neurons, we describe them in terms of organismal physiology; when they occur between
organisms in the open environment, we describe them in terms of ecology. Such inter-
lineage interactions can, however, be represented by the same formal structure at any scale,
and we can treat them, at any scale, as interactions between active inference agents, i.e.
as interactions between physical systems with memory that each persist for some period of
time while exchanging information bidirectionally with their environments.

Lineages imply reproduction, which can be described from multiple perspectives. Consider
symmetric cell division as a canonical example. From the perspective of Fig. 3a, cell divi-
sion co-opts environmental degrees of freedom into an expanded biological system. From
the perspective of Fig. 1, cell division creates a new boundary, and approximately dupli-
cates both the previous internal interaction Hs and the previous environmental interaction
He g(cy. This duplication is inexact, as exact duplication of an unknown quantum state
— and hence of an unknown quantum process — is forbidden by the no-cloning theorem
[106]. Ashby’s [107] Law of Requisite Variety prevents any physical system from knowing
its own state, a result that can also be proved from quantum theory alone [52]; therefore,
the no-cloning theorem applies. From an information-theoretic perspective, even inexact
duplication of any system — or of components within a system — creates redundancy, i.e.
high mutual information between (sub)states, that can serve as a basis for error detection
and correction. Redundancy of components is ubiquitous in biology, from the molecular
scale to that of organismal populations. From the perspective of either of the two daugh-
ter cells produced by cell division, the environment is more predictable than it was for
the parent cell, as the environment now contains something with which it shares mutual
information [108]. The same is true for reproduction at any scale.

Predicting what F will do next requires memory for what F did previously. Redundancy
increases predictive power by providing additional states on which to encode memories.
We can, therefore, view reproduction as memory construction, and a lineage as a tree-
structured memory. This is consistent with the common view of DNA as a record of past
selection; it simply extends this picture to the lineage as a whole. As reproduced cells
are “written” on the environment, they can be considered stigmergic memories. Cells can
“write on” and “read from” other cells by biochemical, bioelastic, or bioelectric processes;
hence other cells can be viewed as explicit as well as external memories, as opposed to the
internal, implicit memories encoded by the internal interaction Ho. As these memories
are external, interactions with them are via Hg g(c); hence we can view them, for the
purposes of modeling C'— E(C) information exchange, as sectors on the cellular boundary
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HBe. All of these comments generalize trivially to the case of organism-scale reproduction
and organism-scale lineages.

In the microbial world, lineages can interact via lateral transfer of genetic information
[109, 110, 111]. At every scale, lineages can interact via niche construction, predation, par-
asitism, symbiosis, including endosymbiosis, and various forms of inter-individual signaling,
including language. Hence information, and therefore memory, can be transferred between
lineages at every scale in the temporal evo/devo/eco hierarchy, including the inter-individual
“ego” scale (R. Watson, personal communication), and spread essentially arbitrarily across
spatial scales. The lineage of information is, therefore, not tree-structured, but rather a
backward- and forward-branching structure in which the past of any item of information
may be as ambiguous as its future. This is particularly true of the overall internal inter-
action Hp;f at any given time, the components of which have “flowed through” multiple
cell-division and lateral-transfer pathways.

We are left, therefore, with an overall picture of “what evolves/develops” as a multiscale
network of constraints and enabling conditions that trades off between variation and er-
ror correction along both temporal and spatial scales. We can think of temporal slices
— snapshots — of this network as collections of individual cells or organisms that are dis-
tributed in space, but this time-slice view does not reveal the informational structure of the
network. When viewed as a multiscale process extended through time, Life is an active in-
ference agent that consumes both thermodynamic energy and abiotic degrees of freedom in
order to increase its ability to predict the behavior of and adaptively influence its environ-
ment. As it grows, it engages in more and more elaborate niche construction, progressively
remodeling abiotic degrees of freedom into a built environment with stable, predictable
properties. Life’s ability to colonize and remodel its environment depends critically on lat-
eral information flows between its component lineages, from gene flow between otherwise
unrelated individuals to the multimodal communication seen in microbial mats or, in even
more elaborated form, in obligate multicellular holobionts or in plant, animal, or human
communities.

4 Self models

The idea that what we humans experience as “our self” is a model constructed in real
time and as needed by components of the default-mode network has become mainstream
in cognitive neuroscience [112, 113, 114, 115, 116]. That many activities are performed
“non self-consciously” — and in particular, that activities performed with expertise are, and
can only be, performed non self-consciously — indicates that the self model is deployed in
circumstances of uncertainly in which explicit metacognitive monitoring is needed [117, 118,
119]. Turning the experience of the self model off is a goal in some meditation practices, and
neurocognitive studies of such practices confirm that default-mode network deactivation is
involved in this experience [120, 121, 122].

From an active-inference perspective, the human experienced-self model is a component of
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the overall generative model employed to predict the consequences of actions, particularly
actions in a social context. Dysfunctions in the model, particularly dysfunctional assign-
ments of precision or relative importance to particular environmental inputs or prior beliefs,
result in contextually-dysfunctional actions in predictable ways [123, 124, 125]. This sug-
gests generalizing the notion of a “self-model” to any metacognitive component of an overall
generative model that modulates precision assignments and hence effectively allocates at-
tention and other cognitive resources, including memory, to some aspects of an action
context at the expense of others [126]. Such metacognitive components can be expected in
any system that experiences selective pressures with different characteristic timescales [81].
Properties of a context that a system assigns high precision to can be considered properties
that the system cares about [127, 128].! Positioning these items of concern, which may
include the system’s own past and future selves, in space and time relative to the system’s
space-time location generates the system’s “cognitive light cone” (CLC), a representation
of the maximal extent in space and time of its concerns [127]; crucially, the CLC is not
depicting the maximal reach of sensors or effectors, but rather the maximum size of states
that the agent is capable of working towards as goals. As what is in the CLC is what can
influence the system’s metacognitive control of attention, we can view the CLC as a gener-
alization of the experienced self-model that can applied to any system, and in particular,
to any organism.

'Indeed, one could argue that the competence of large language models based upon transformer architec-
tures rely exactly upon this mechanism; namely, attention heads that afford a high precision to observations
in the past, when determining predictions of the future.
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Figure 5: The cognitive light cone (CLC) generalizes the idea of an experienced self-model to
the collection of all “items of concern” that can influence a system’s allocation of attention
and other cognitive resources. The base of the cone represents what the agent can care
about — the spatial extent of the agent’s goals or concerns at any given time. The height
of the cone represents the temporal reach of the agent’s goals into the future, while its
depth represents the temporal depth of the memories that contribute to the agent’s pursuit
of current goals. Systems at different scales, or at different developmental timepoints or
lifecycle stages, can have CLCs of greatly varying spatial and temporal extents. From [127],
CC-BY license.

Reconceptualizing the self-model as the CLC emphasizes its functional role as a resource-
allocation tool. The CLC serves, in particular, as a context for event memories and a focus
for planning. Both the spatial and temporal extents of the CLC are heavily dependent
on both memory and computational processing resources, i.e. on the degrees of freedom
available to implement the system’s internal interaction and the size of its boundary. The
CLCs of unicells and small multicellulars, e.g. the tick in Fig. 5, may be limited to the
immediate vicinity of its physiological boundary and one or a few of its internally-counted
time steps. The CLCs of humans, in contrast, can employ imagination as a resource to
extend their active goals into interstellar space, and both backwards and forwards in time far
beyond an individual’s lifespan. Human CLCs, at least, can expand or contract depending
on an individual’s current state, resources, and ambitions; e.g. an infant might have a
narrow cone focused on immediate survival, a child may care about friends or look forward
to “what they want to be when they grow up”, and a mature adult may have a broader
cone encompassing concerns about the state of the world and the well-being of others even
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far into the future. Collectives of cells — e.g. of human cells — can clearly have CLCs
much larger than those of individual cells, which represent anatomical states as target
morphologies toward which they actively work in regulative development and regeneration
(78, 129]. Collectives of some social organisms — e.g. ants — appear to have CLCs larger
than those of their individual members [130]. Whether collectives of humans have CLCs
larger than those of individual humans remains an open question.

As with the experienced self-model as implemented by the default-mode network, the op-
erational size of the CLC can be expanded or contracted in a task- or context-dependent
way. Activities that require unwavering attentional focus on the immediate spatiotempo-
ral environment — e.g. rock climbing or competitive driving — are incompatible with the
re-examination of history or long-term planning. The farther spatial and temporal extents
of the CLC can, moreover, be expected to be coarse-grained relative to the more proxi-
mal components. This coarse-graining reflects the fact that the CLC is, like the human
experienced self-model, a construct that must be computed, in real time, from information
available at some particular time and in some particular context. Hence the temporal depth
of the CLC in both directions is critically dependent on the system’s ability to track its
own identity through imagined, or projected time, i.e. on its “mental time travel” ability
[131]. It is also dependent, in any realistic, resource-limited setting, on the system’s ability
to forget unnecessary details of its past and make explicit only those elements of a plan that
are assigned the greatest relevance. It is dependent, therefore, on the system implementing
a heuristic solution to the Frame Problem [132], the problem of deciding what remains
unchanged following an action [133].

A critical feature of the experienced self-model in humans is the felt sense of ownership
of the self and its thoughts, actions, body, etc [134]. Failures of the sense of ownership
manifest as various types of dissociation, which can be either pathological or therapeutic,
depending on the mechanisms involved [135]. What is experienced as “owned” constitutes
the experienced self, hence the distress caused by phenomena such as “thought insertion”
in schizophrenia, in which some experiences are classified as “not mine” [136]. Humans
are, however, also broadly susceptible to “false memories” that are considered “owned”
[137]. Generation of the sense of ownership of experiences appears to be a component
of the broader human “source” or “reality” monitoring function, which critically involves
evolutionary-recent anterior-prefrontal cortical regions [138] and hence may not be widely
shared even among primates. One can speculate that to the extent that memories are
experienced by systems that lack source monitoring capabilities, they are experienced as
anonymous. In this they would be on a par with non-experienced memories, such as those
encoded in the genome, which in an important sense are anonymous.

These considerations raise, clearly, the question of whether Life as a whole or even substan-
tial, multi-individual lineages have self models, CLCs, or senses of ownership. If a social
group can have a CLC, a lineage of the same kind of organisms can presumably have a
CLC. Examples of altruism or collective problem solving, even at the cellular level [139]
suggest that collective CLCs may exist in diverse organisms and at multiple scales.
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5 Procedural versus declarative

Drew McDermott [140] famously urged artificial intelligence researchers to avoid “any indul-
gence in the ‘procedural-declarative’ controversy,” a controversy about data structures for
memory that was, in the context of the standard von Neumann computer architecture, only
about which virtual machine description [98, 99] one prefers. The procedural-declarative
dichotomy is just the process-object dichotomy for virtual implementations of memory.
Memories encoded by updated model parameters, as in an artificial neural network, are
procedural; memories encoded as discrete if-then rules, as in an expert system, are declar-
ative. If S is a quantum system, memories encoded by Hg on the computational “bulk”
of S are procedural, while memories encoded by Hgg on S’s boundary are declarative. We
know from Fig. 1, Eq. (1), and Fig. 4, however, that this is just a choice of interpretation.
When we zoom out to the joint-system scale, the distinction between bulk and boundary
disappears. When we zoom into the scale of components of S, the distinction does not
disappear, but becomes fragmented. All of these descriptions are just alternative ways of
representing the same dynamics. They enable different understandings, but do not describe
different phenomena. They are, at bottom, just representations of a single phenomenon at
different scales. They merely specify different virtual machines, as McDermott pointed out.

As we have emphasized throughout, physical interaction is interaction — there is no such
thing, physically, as passive observation. It is, moreover, opportunities for action that make
some observed difference “make a difference” [141] and hence give it meaning [142]. Any
action on the environment potentially creates a stigmergic memory; whether the result of
the action serves as a memory depends on the system’s ability to re-identify it as such
in a subsequent observation. That re-identification ability depends on the system’s QRFs
and, in particular, its ability to update its QRFs — via model refinement, i.e. learning —
to correctly predict the consequences of its actions that will be subsequently observable.
We humans tend to take this coupling between writing stigmergic memories and refining
our models for granted, until the coupling fails and we forget where we have put our car
keys or address book. Such failures reveal that procedural and declarative memories are
mutually dependent: one without the other is useless. We can observe this at any scale;
niche construction, for example, is useless if it cannot be remembered and the relevant
environmental modifications identified later.

The apparent “hollowness” of language use by statistical models such as ChatGPT [143]
provides an illustration of this point. Large Language Models (LLMs) can say what words
mean, and if coupled with image recognizers and generators, can provide visual illustra-
tions. However, their lack of manipulative abilities disconnect their knowledge of semantic
relations from the world as we perceive it and describe it in language. At least at present,
LLMs such as ChatGPT act only on their users, and aside from the interaction record in the
context window, they do not update models of individual users to reflect what has been said
to them in the past and predict how they will respond in future interactions. These systems
have, in other words, very poor ability to re-identify the stigmergic memories they them-
selves have written on their world. They appear, therefore, to be very intelligent systems
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with severe anterograde amnesia; this renders their language use uncanny, and contributes
to the sense that they use language without understanding it.

A second, more subtle illustration is provided by any agent’s relationship to its memories,
whether these are encoded on its environment or by its own body. Human memories,
particularly episodic memories, are now widely recognized as reconstructed each time they
are accessed [144, 145]; see [146] for a formal model of this process. If we view the encoded
engram as the system S of interest, its state is being modified whenever it interacts with its
environment F, the (rest of the) agent that experiences the memory. Reading and rewriting
a memory is, from this perspective, an interaction and hence an exchange of information
— a conversation between an engram and an agent that employs it as a representation of
some fact or event from the past.

As with the idea of a self-model or a CLC, we can examine this co-dependence between
stigmergic memory and model refinement — and hence between declarative and procedu-
ral memories — at scales other than that of the individual organism. Federated learning
systems with cognitive division of labor, from microbial mats to universities, are networks
of mutually-dependent cognitive niches in which all participants perform both stigmergic
memory recording — local niche construction — and model refinement.

People don’t possess ideas, ideas possess people.
— Carl Jung

6 Conclusion

We have discussed here how both process philosophy and traditional ontology objectify
phenomena that can only be defined relative to a stipulated boundary that must be assumed,
a priori, to remain stable (or slowly varying) over some time period of interest. Basic
physics and the FEP provide relatively simple, well-developed formal constructs that allow
us to view objects (from a given observer’s perspective, encodings by its environment on
its boundary) and processes (information flows within or between observable objects) as
complementary while making only minimal, generic assumptions. This approach rejects the
traditional object-process dichotomy as unhelpful and indeed ill-construed. By recasting
all objects as processes — and vice-versa — it allows us to describe evo/devo/eco processes in
terms of multi-scale constraint networks, redundancy generation, and error detection and
correction. They thus give rise to a formally well-specified, scale-free biology.

These ideas have many implications beyond theory, specifically in areas which can benefit
from an improved understanding of how to engineer with agential materials [147]: regener-
ative medicine and synthetic morphology [148, 149, 150, 151]. While molecular biology has
made enormous strides, we believe that the micromanagement approach to forcing molecu-
lar states will reach natural limitations beyond monogenic diseases. Inducing the complex
morphological changes needed for repair of large-scale traumatic injuries and birth defects,
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reprogramming cancer, and creating synthetic living machines of desired form and function
cannot be done exclusively bottom-up. Determining which genetic information needs to be
changed (and how) to drive desired organ-level outcomes faces intractable inverse problems
(78, 152]. The path forward must include top-down approaches which exploit the compe-
tency of cells, tissues, and molecular networks to solve problems: pushing the complexity
onto the system itself by re-writing its homeodynamic goal states, modifying its priors, and
recognizing the valence of stimuli that control how it navigates its various problem spaces
[129].

We have recently argued that laboratory and conceptual tools from the neuro- and cogni-
tive sciences are useful far beyond the neural control of motion in conventional “behavior”.
Training and communication — ways to alter memories and thus behavior — are being used to
control outcomes in physiological, transcriptional, and anatomical spaces [153, 154]. Indeed,
frameworks that seek to affect morphogenesis by modeling it as a collective intelligence of
cells have led to numerous new discoveries (reviewed in [26, 150]). For example, promising
cancer therapeutic methods have been discovered by considering oncogenic phenotypes as
resulting from a shrinkage of the CLC (a “software defect” not necessarily requiring any
genetic lesion as a cause) [155]. This pathogenic reduction of the scale of the border be-
tween Self and World down-shifts the grandiose organ-maintenance goal memories of large
cell groups into the ancient, tiny physiological and metabolic goals of unicellular organisms.
They then view the rest of the body as just external environment [127, 128]. From a biomed-
ical perspective, it is interesting that bioelectrically reconnecting — and hence electrically
realigning — cells via gap junctions, despite their very strong expression of powerful human
oncogenes, abolishes the cancer phenotype in vivo [156, 157, 158, 159]. Regulating gap junc-
tion connectivity regulates the extent to which cells act as biochemically-distinct units, and
hence regulates the extent to which they have distinct biochemically-implemented memo-
ries and goals. Bioelectric networks coupled by such highly regulatable electrical synapses
encompass most cell types, and can store larger and more complex states as setpoints for
goal-directed processes that navigate diverse problem spaces, e.g. the anatomical space of
tissues, at larger scales than the physiological and metabolic goal states of single cells [153].

From a more fundamental (evolutionary) perspective, one can view the direct physiological
coupling (via gap junctions) as a way to use anonymization of memories, and the fluidity of
the size of the “owner” of those memories, to scale up a Self from that of single cells to that
of a whole organism. For example, the molecular consequences (i.e., memory engram) of an
event in cell A could propagate directly into cell B via the gap junctional connections. Cell
B cannot distinguish that this memory trace is, in effect, a false memory for it. And while
it is a false memory for cell B, it is a veridical memory for the newly-formed being AB,
because the cognitive hacking induced by this memory sharing process produces a larger
system with shared memories — a mind-meld in which it is difficult to maintain unique
identities for the parts or to cheat or defect (in the game theory sense). The ability of
multiple cells to share the same memories (i.e., world-model and priors) is what enables the
collective to work together on enormous goals such as the reconstruction of a salamander
limb after amputation. The sharing of anonymous memories is one of the key mechanisms
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for the scaling up of minds, and for combining smaller Selves into larger networks with
greater intelligence in new problem spaces.

The fact that memories do not come with metadata indicating whose memories they are is
critical — this is why cell B cannot maintain its own identity once it is directly coupled to cell
A — as it prevents recipients of memories from rejecting the new memories as foreign. Thus,
the nature of memories as a sort of autonomous, promiscuous cognitive Ronin is essential
to their function as part of the glue that partially resolves the combination problem in
philosophy of mind and the evolutionary origin of anatomical plasticity and robustness from
simple metabolic homeostatic loops [27, 160]. This gives rise to a pleasing, if unconventional,
“strange loop” [161]: memories are patterns interpreted by agents (and have their reality
within the cognitive medium of an existing agent), but they are also agents in their own
right which contribute to the autopoiesis and robustness of the greater cognitive system
around them, as a kind of niche construction. The causal influence seems to dynamically
flow in both directions across the hierarchy of scale and solidity: downward and upward.

Taking seriously the potential uses of deep concepts in cognitive science to implement
transformative biomedicine and bioengineering requires us to develop new frameworks for
better understanding Selves, boundaries, memories, and their dynamic relationships across
scales and material implementations. We must move beyond the constraining dichotomy of
“real objects” (e.g., cells, tissues) and “patterns” (e.g., memories and signals within them)
and investigate the symmetries and invariants that allow each to be both kinds of thing,
depending on perspective, and amenable to the same unifying framework. These will be
essential for developing practical tools to guide the up- and down-scaling of Selves and the
movement and transformation of functional memories across tissues in therapeutic contexts
(162, 163]. It is also likely that a better understanding of the ability of memories to reify
novel Selves, and modify existing ones, will be of significant importance in (trans)personal
psychology and efforts to understand social systems and other ways in which we engineer
our reality.
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